Research on Visual/LiDAR SLAM for Robotic Navigation in Complex Urban Dynamic Scenes

Dr. Li-ta Hsu, Dr. Wen, W., Dr. Jiachen Zhang, Xiwei Bai, Feng Huang, Xikun Liu, Yihan Zhong.

Abstract

The visual/LiDAR SLAM methods are challenged in complex urban scenarios. In this project, we aim to study the mechanism of the impacts cuased by the dynamic scenarios on the visual/LiDAR SLAM methods. We try to answer the quesitons of how the dynamic objects affect the state estimation of visual/LiDAR SLAM methods and how to improve.

Recent News

  • September 2022, 1 paper get accepted in IET Intelligent Transport Systems.
    • Zhong, Y., Huang, F., Zhang, J., Wen, W., Hsu, L.-T.: Low-cost solid-state LiDAR/inertial-based localization with prior map for autonomous systems in urban scenarios. IET Intell. Transp. Syst. 00, 1– 13 (2022). https://doi.org/10.1049/itr2.12273. (Paper, Video)
  • Aug 2022, 1 paper on LiDAR SLAM get accepted in NAVIGATION: Journal of the Institute of Navigation
    • Wen, W., & Hsu, L. T. (2022). AGPC-SLAM: Absolute Ground Plane Constrained 3D Lidar SLAM. NAVIGATION: Journal of the Institute of Navigation, 69(3).

GNSS/LiDAR/Visual/INS integration for Robotics Navigation​

2022

  1. Zhong, Y., Huang, F., Zhang, J., Wen, W.*, Hsu, L.-T.: Low-cost solid-state LiDAR/inertial-based localization with prior map for autonomous systems in urban scenarios. IET Intell. Transp. Syst. 00, 1– 13 (2022). https://doi.org/10.1049/itr2.12273. (Paper, Video)

  2. Wen, W., & Hsu, L. T. (2022). AGPC-SLAM: Absolute Ground Plane Constrained 3D Lidar SLAM. NAVIGATION: Journal of the Institute of Navigation, 69(3).(Paper)

  3. Zhang, J., Wen, W*., Huang, F., Wang, Y., Chen, X., & Hsu, L. T. (2022). GNSS-RTK Adaptively Integrated with LiDAR/IMU Odometry for Continuously Global Positioning in Urban Canyons. Applied Sciences, 12(10), 5193. (Paper)

  4. Feng Huang, Wen, W.*, Hoi-Fung Ng, Li-Ta Hsu, “LiDAR Aided Cycle Slip Detection for GNSS Real-time Kinematic Positioning in Urban Environments,” 2022 IEEE International Intelligent Transportation Systems Conference (ITSC), 2022 (accepted)

2021

  1. Zhang, J.; Wen, W.*; Huang, F.; Chen, X.; Hsu, L.-T. Coarse-to-Fine Loosely-Coupled LiDAR-Inertial Odometry for Urban Positioning and Mapping. Remote Sens. 2021, 13, 2371. https://doi.org/10.3390/rs13122371 (Paper)

  2. F. Huang, W. Wen, J. Zhang and L. -T. Hsu*, “Point Wise or Feature Wise? A Benchmark Comparison of Publicly Available Lidar Odometry Algorithms in Urban Canyons,” in IEEE Intelligent Transportation Systems Magazine, doi: 10.1109/MITS.2021.3092731.(Paper)

  3. Huang, F., Shen, D., Wen, W., Zhang, J., Hsu, L., A coarse-to-fine LiDar-based SLAM with dynamic object removal in dense urban areas , ION GNSS+ 2021, St. Louis, Missouri, USA (Paper, Video)

  4. Jiachen Zhang, Wen, W., Feng Huang and Li-Ta Hsu, Continuous GNSS-RTK Positioning Aided by LiDAR/Inertial Odometry with Intelligent GNSS Selection in Urban Canyons, ION GNSS+ 2021, St. Louis, Missouri, USA. (Paper, Video)

2020

  1. X. Bai, B. Zhang, W. Wen, L. -T. Hsu and H. Li, “Perception-aided Visual-Inertial Integrated Positioning in Dynamic Urban Areas,” 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), 2020, pp. 1563-1571, doi: 10.1109/PLANS46316.2020.9109963.(Paper)

  2. Bai, X., Wen, W. and Hsu, L.T., 2020. Robust visual-inertial integrated navigation system aided by online sensor model adaption for autonomous ground vehicles in urban areas. Remote Sensing, 12(10), p.1686. (Paper)

2019

  1. Wen, W., Bai, X., Zhan, W., Tomizuka, M. and Hsu, L.T., 2019. Uncertainty estimation of LiDAR matching aided by dynamic vehicle detection and high definition map. Electronics letters, 55(6), pp.348-349. (Paper)

2018

  1. Wen, W.; Hsu, L.-T.; Zhang, G. Performance Analysis of NDT-based Graph SLAM for Autonomous Vehicle in Diverse Typical Driving Scenarios of Hong Kong. Sensors 2018, 18, 3928. https://doi.org/10.3390/s18113928

Video Demonstration

Multi-sensor integration navigation system for autonomous driving

Demonstration: Low-cost Solid-state LiDAR/Inertial Based Localization with Prior Map

Presentation in ION GNSS+ 2021: A Coarse-to-Fine LiDAR-Based SLAM with Dynamic Object Removal in Dense Urban Areas

Presentation in ION GNSS+ 2021: Continuous GNSS-RTKAidedbyLiDAR/InertialOdometry with Intelligent GNSSSelection in Urban Canyons