

Visual Navigation: From Sensor To Modeling I AAE4203 – Guidance and Navigation

Dr Weisong Wen Research Assistant Professor

Department of Aeronautical and Aviation Engineering The Hong Kong Polytechnic University *Week 4, 7 Feb 2022*

Outline

- > Short Revision of the GNSS-RTK
	- Jacobian matrix of double-difference carrier-phase measurements
	- Answers to the assignment 1
- > Model of the Camera
	- How the object in the world is converted into the pixels in images?
- > Feature Descriptor and Detection
	- How to represent an image with several key features?
- > Feature Matching via Descriptor
	- How to find the same feature from two different images?
- > Feature Matching via Optical Flow
	- How to find the same feature from two different images?

Look back to the navigation system in Autonomous Driving Vehicle

Tesla Autonomous Driving Car

<https://www.youtube.com/watch?v=tlThdr3O5Qo>

> Integration of cameras, maps, vehicle sensors and GNSS for robust and accurate navigation.

THE HONG KONG

CHNIC UNIVERSITY

Interdisciplinary Division of
Aeronautical and Aviation Engineering

HE HONG KONG

INIC UNIVERSITY

linary Division of
:al and Aviation Engineering

…

Model of the camera

Widely used camera models

Pinhole camera model

Pinhole camera

Fisheye camera model

Field of view (FOV) The fish-eye camera can provide larger fieldof-view!

Fisheye camera

Record the intensity of light from different angles on a two-dimensional plane

In other words, the camera is a function:

The input : Ray of different angle from physical world! **The output** : Two-dimensional coordinate in the image pixel coordinate!

Take the pinhole camera as an example and the specific camera model!

Revision…

>Before we start the camera model, we should know the representation transformation between different coordinates!

e Hong Kong

Pose Representation of UAV in Space

- > **Scenario**: A planned flight from Hong Kong airport to the Los Angeles.
- > **Question**: How to define the pose of a flight in the space?

tion Engineering

Pose Representation of UAV in Space

Pose of an aircraft in ECEF coordinate $(x_p^G, y_p^G, z_p^G, \phi_p^G, \theta_p^G, \psi_p^G)$:

- x_p^G, y_p^G, z_p^G , **position** in ECEF frame
- ϕ_p^G , θ_p^G , ψ_p^G , the **orientation** (*roll, pitch* and *yaw angle*).

Since the body-fixed coordinate C_R is fixed on the flight mechanics. The **coordinate transformation** between C_R and represents the **pose of the flight mechanics in the ECEF frame**!

Rotation Representation with Matrix: Derivation from Orthogonal Basis

Define the unit orthogonal basis of \mathbf{C}_G as $\left[\mathbf{e}_x^G, \mathbf{e}_y^G, \mathbf{e}_z^G\right]$ and the coordinate of vector **a** as $[a_x^G, a_y^G, a_z^G]$.

Define the unit orthogonal basis of \mathbf{C}_B as $\left[\mathbf{e}_x^B,\mathbf{e}_y^B,\mathbf{e}_z^B\right]$ and the coordinate of vector **a** as $[a_x^B, a_y^B, a_z^B]$.

Since the vector **a** itself is **constant despite of the representation** in different coordinate systems. We have

$$
\left[\mathbf{e}_x^G, \mathbf{e}_y^G, \mathbf{e}_z^G\right] \begin{bmatrix} a_x^G \\ a_y^G \\ a_z^G \end{bmatrix} = \left[\mathbf{e}_x^B, \mathbf{e}_y^B, \mathbf{e}_z^B\right] \begin{bmatrix} a_x^B \\ a_y^B \\ a_z^B \end{bmatrix}
$$

The rotation between two coordinate systems can be represented by the rotation matrix \mathbf{R}_B^G ! Opening Minds · Shaping the Future · 啟迪思維 · 成就未來

Rotation and Position Representation

Given

- The position of a particle **a** in the body-fixed coordinate as (a_x^B, a_y^B, a_z^B)
- The transformation between between C_B and C_G as rotation matrix R_B^G and translation vector $\mathbf{t}_B^G(x_B^G, y_B^G, z_B^G)$ Question:
- Calculate the coordinate of particle \mathbf{a} in the coordinate \mathbf{C}_G .

the position of the flight mechanic in the ECEF coordinate system!

disciplinary Division of viation Engineering

Question

Given

- The position of a particle **a** in the ECEF coordinate as $\left(a_{x}^{G},a_{y}^{G},a_{z}^{G}\right)$
- The transformation between between C_B and C_G as rotation matrix \mathbf{R}^G_B and translation vector \mathbf{t}^G_B Question:
- Calculate the coordinate of particle **a** in the coordinate C_R .

Solution:

Since we have
$$
\begin{bmatrix} a_x^G \\ a_y^G \\ a_z^G \end{bmatrix} = \mathbf{R}_B^G \begin{bmatrix} a_x^B \\ a_y^B \\ a_z^B \end{bmatrix} + \mathbf{t}_B^G,
$$

Therefore, we have

$$
\begin{bmatrix} a_x^G \\ a_y^G \\ a_y^G \end{bmatrix} - \mathbf{t}_B^G = \mathbf{R}_B^G \begin{bmatrix} a_x^B \\ a_y^B \\ a_z^B \end{bmatrix},
$$

$$
\begin{bmatrix} a_y^G \\ a_z^G \end{bmatrix} - \mathbf{t}_B^G = \mathbf{R}_B^G \begin{bmatrix} a_y^B \\ a_y^B \\ a_z^B \end{bmatrix},
$$

 Z_G Z_B Rotation Matrix \mathbf{R}_B^G and translation vector \mathbf{t}_{B}^{G} Solution: Multiple \mathbf{R}_{B}^{G-1} on both sides, we get a_x^B a_y^B a_Z^B $=$ R $_{B}^{G}$ ⁻¹ a_x^G a_y^G a_z^G $-\,{\bf t}_B^G\,\,\Big\},$

 y_G

ECEF

Particle $\mathbf{a}: (a_x^G, a_y^G, a_z^G)$

?

 y_B

 $\overline{\mathcal{X}}_{B}$

 x^{C}

Imaging plane

Model of the camera

THE HONG KONG

Try to formulate: a point in world frame and its representation in pixel frame!

:Camera Intrinsic Matrix *s*: Depth between Camera & Feature

Describes the relationship between 3D coordinates and 2D pixel coordinates

Distortion Reasons

SAMARE

Why distortion occur?

- **Optical distortion**
- Assembly of the camera

Different degree of distortion

Due to **lens shape,** called **radial distortion**

Severe distortion in the middle

Severe distortion in the boundary

HE HONG KONG

CHNIC UNIVERSITY

Opening Minds · Shaping the Future · 啟迪思維 · 成就未來

Distortion Reasons

Why distortion occur?

- ➢ Optical distortion
- Assembly of the camera

Due to the **assembly error,** the lens and the imaging plane **cannot strictly parallel,** called **tangential distortion**

Different degree of distortion

viation Engineering

"he Hong Kong

ECHNIC UNIVERSITY

How to formulate these distortion ?

➢ Optical distortion: **radial distortion** ➢ Assembly of the camera: **tangential distortion**

Corrected coordinates

$$
x_c = x(1 + k_1r^2 + k_2r^4 + k_3r^6) + 2p_1xy + p_2(r^2 + 2x^2)
$$

 $v_c = v(1 + k_1r^2 + k_2r^4 + k_3r^6) + p_1(r^2 + 2y^2) + 2p_2xy$

k1, k2, and k3 — Radial distortion coefficients of the lens p1 and p2 — Tangential distortion coefficients of the lens r^2 : $x^2 + y^2$

Illustration

Calibration correction

$$
x_c = x(1 + k_1r^2 + k_2r^4 + k_3r^6) + 2p_1xy + p_2(r^2 + 2x^2)
$$

$$
y_c = y(1 + k_1r^2 + k_2r^4 + k_3r^6) + p_1(r^2 + 2y^2) + 2p_2xy
$$

The calibration is to get **the coefficients of distortion**

k1, **k2**, and **k3** — Radial distortion coefficients of the lens **p1** and **p2** — Tangential distortion coefficients of the lens

> How to calibrate ? And how many parameters to calibrate?

coefficients

19 **p1, p2** :tangential distortion

Calibration of camera

$$
\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \frac{1}{z^C} \begin{bmatrix} f_u & 0 & \Delta u \\ 0 & f_v & \Delta v \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x^C \\ y^C \\ z^C \end{bmatrix}
$$

- Optical distortion: **radial distortion**
- Assembly of the camera: **tangential distortion**

Camera Calibration

Calibration of camera

Algorithm: Zhang Zhengyou Calibration^[1]

Advantages: The equipment is simple, just a printed checkerboard; High precision, relative error can be lower than 0.3%;

He received the IEEE Helmholtz Time Test Award for "Zhang's Calibration Method" in 2013

A very famous expert in computer vision and multimedia technology

[1] Zhang, Zhengyou. "A flexible new technique for camera calibration." *IEEE Transactions on pattern analysis* 21 *and machine intelligence* 22.11 (2000): 1330-1334. Opening Minds · Shaping the Future · 啟迪思維 · 成就未來

HE HONG KONG

UNIVERSITY

y Division of
Id Aviation Engineering

23

Feature Descriptor and Detection

The image is a matrix composed of brightness and color, so it has colorful information

Sensitive to changes of environment, such as:

Opening M

- Angle of view
- **Illumination**

• Hue

Therefore, the **representative points** are generally detected for correlation calculations

We hope they are distinctive, such as corners

Even perform translation, rotation, scale, the feature point still keeps invariance

Features **Key point Descriptor** Where is it How it looks like

The descriptor is hand-crafted features, it can count the gray/color gradient changes around key points.

 (a)

Classical Key Point:

Shi-Tomas^[1]

……

Classical Descriptor:

SIFT(Scale-invariant feature transform) [2] ORB(Oriented FAST and rotated BRIEF)[3]

[1] Shi, Jianbo. "**Good features to track**." 1994 Proceedings of IEEE conference on computer vision and pattern recognition. IEEE, 1994

[2] Lowe, David G. "**Distinctive Image Features from Scale-Invariant Keypoints**." IJCV, 2004

[3] Rublee, Ethan, et al. "ORB: An efficient alternative to SIFT or SURF." ICCV, 2011

Classical Key Point:

Shi-Tomas^[1] corner feature

 ∂x

$$
E(u, v) = \sum_{(x, y)} w(x, y) [I(x + u, y + v) - I(x, y)]^{2}
$$

w(x , y): represents the weight of each pixel in the window)

 (u, v) denotes the small displacement in the x, y direction

 $E(u, v)$: the weighted sum of all pixels in the window is multiplied by the gray difference of the pixels at different positions.

$$
I(x + u, y + v) \approx I(x, y) + uI_x + vI_y
$$

$$
I_x = \frac{\partial I(x, y)}{\partial x}, I_y = \frac{\partial I(x, y)}{\partial y}
$$

 ∂y

 \overline{R}

Feature Descriptor and Detection

$$
E(u, v) = \sum_{(x,y)} w(x, y) \times [I(x, y) + uI_x + vI_y - I(x, y)]^2
$$

\n
$$
= \sum_{(x,y)} w(x, y) \times [uI_x + vI_y]^2
$$

\n
$$
= \sum_{(x,y)} w(x, y) \times [u^2I_x^2 + v^2I_y^2 + 2uvI_xI_y]
$$

\n
$$
E(u, v) = \sum_{(x,y)} w(x, y) [u \t v] \begin{bmatrix} I_x^2 & I_xI_y \\ I_xI_y & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}
$$

\n
$$
= \sum_{(x,y)} w(x, y) \begin{bmatrix} I_x^2 & I_xI_y \\ I_xI_y & I_y^2 \end{bmatrix} \longrightarrow R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}
$$

 $R = min(\lambda_1, \lambda_2) >$ predefined threshold

How to describe it ?

Classical Descriptor:

……

SIFT(Scale-invariant feature transform)^[2]

ORB(Oriented FAST and rotated BRIEF)^[3]

How to **construct** the descriptor?

- ➢ Determine descriptor regions
- \triangleright The axis is rotated to the direction of the key point
- ➢ Weighted distribution of gradient value interpolation in sub-regions to 8 directions

Classical Descriptor:

……

SIFT(Scale-invariant feature transform) [2]

ORB(Oriented FAST and rotated BRIEF)[3]

How to **construct** the descriptor?

- ➢ Determine descriptor regions (a circle)
- ➢ Pick *N* point pairs (N=128,256,512)
- ➢ Determine the operator **T** :

$$
\mathbf{T}(P(A,B)) = \begin{cases} 1 & P_A > P_B \\ 0 & P_A \le P_B \end{cases}
$$

https://blog.csdn.net/yang843061497

Perform T operations on the selected point pairs respectively, and combine the obtained results

Feature Matching via Optical Flow

What is the optical flow?

What is the difference between ORB matching and optical flow?

Optical flow denotes two-frame difference of motion estimation algorithm

u, v

Details of Optical Flow **Try to formulate: a point in world frame and its representation in pixel frame!**

- **Constant brightness**
- Short-distance (short-term) movement \bullet
- Spatial consistency

 $I(u, v, t) = I(u + du, v + dv, t + dt)$

First-order Taylor expansion:

$$
I(u+du, v+dv, t+dt) = I(u, v, t) + \frac{\partial I}{\partial u} du + \frac{\partial I}{\partial v} dv + \frac{\partial I}{\partial t} dt
$$

$$
\frac{\partial I}{\partial u}\frac{u}{dt} + \frac{\partial I}{\partial v}\frac{v}{dt} = -\frac{\partial I}{\partial t}
$$

$$
\overline{u}_u u_t \quad I_v \quad v_t \quad I_t
$$

uation but t Δ Only one equation but two unknown variables

$$
\begin{bmatrix} I_{u1} & I_{v1} \\ I_{u2} & I_{v2} \\ \vdots & \vdots \\ I_{ui} & I_{vi} \end{bmatrix} \begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix} = - \begin{bmatrix} I_{t1} \\ I_{t2} \\ \vdots \\ I_{ti} \end{bmatrix}, i \in (1, n \times n)
$$

$$
\begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix} = (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}}(-b)
$$

with $\mathbf{A} = \begin{bmatrix} I_{u1} & I_{v1} \\ I_{u2} & I_{v2} \\ \vdots & \vdots \\ I_{ui} & I_{vi} \end{bmatrix} b = \begin{bmatrix} I_{t1} \\ I_{t2} \\ \vdots \\ I_{ti} \end{bmatrix}$

$$
\begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix} = \begin{bmatrix} \sum_i I_{ui}^2 & \sum_i I_{ui} I_{vi} \\ \sum_i I_{vi} I_{ui} & \sum_i I_{vi}^2 \end{bmatrix}^{-1} \begin{bmatrix} -\sum_i I_{ui} I_{ti} \\ -\sum_i I_{vi} I_{ti} \end{bmatrix}
$$
34

Opening Minds • Shaping the Future • 啟迪思維 •

How ORB matching features

- Feature detection
- Feature descriptor
- Feature matching

How ORB matching features

- Feature detection
- Feature descriptor
- Feature matching

See the similar features in consecutive images (2D -2D)

How ORB matching features ?

ORB(Oriented FAST and rotated BRIEF)[3]

Based on FAST algorithm and BRIEF algorithm, a method to describe feature points by using the *binary string*

Feature Points **Detection**: Feature from Accelerated Segment Test

The basic definition: A pixel X with significantly different gray value with the neighborhood region pixels.

Difference with the Shi-Tomas corner feature.

Recognized as feature points

ORB

IE HONG KONG

INIVERSITY

Rotated BRIEF

Oriented FAST

ORB(Oriented FAST and rotated BRIEF)[3]

Based on FAST algorithm and BRIEF algorithm, a method to describe feature points by using the *binary string*

Feature Points **Descriptor**: Binary Robust Independent Elementary Features

The basic definition: BRIEF extracts descriptors around feature points by binary coding method

Opening Minds · Shaping the Future · 啟迪思維 · 成就未來

ORB(Oriented FAST and rotated BRIEF)[3]

Feature Points **descriptor**: Binary Robust Independent Elementary Features

Randomly selecting n pairs of pixel points (different pairs of colors)

$$
\mathsf{T}(\mathsf{P}(\mathsf{A},\mathsf{B}))=\begin{cases}1 & P_A > P_B\\ & 0 & P_A \le P_B\end{cases}
$$

How to encode **a pair of pixels**?

ORB Rotated **BRIFF Oriented** FAST

Opening Minds · Shaping the Future · 啟迪思維 · 成就未來

P: Pixel intensity

[3] Rublee, Ethan , et al. "**ORB: An efficient alternative to SIFT or SURF**." ICCV, 2011

ORB(Oriented FAST and rotated BRIEF)[3]

Feature Points **descriptor**: Binary Robust Independent Elementary Features

How to encode **a set of pixels** ?

$$
f_n(\mathsf{P}) = \sum_{1 \leq i \leq n} 2^{i-1} \mathrm{T}(\mathsf{P}; \text{pixel pairs})
$$

P: Pixel intensity

 $$ $$ $$ $$

Descriptor:1011

Opening Minds · Shaping the Future · 啟迪思維 · 成就未來

We have detected and described features, now to match them

 D_1 : 10110101… D_i : 11010001... XOR-exclusive OR What is Hamming distance?

Hamming distance: 01100100

Definition: Perform exclusive OR (XOR) operation on two strings, and count the number of results of 1, then this number is the Hamming distance

Select the Minimum distance: best matching feature

Details of Optical Flow

- \triangleright What is the optical flow ?
- What is the difference between ORB matching and optical flow?

Optical flow: no descriptor, but three assumptions

ORB matching: descriptor

- >Feature **detection** using SIFT, ORB and Shi-Tomas feature descriptors.
- > Feature **tracking** using SIFT, ORB descriptors and optical flow.

- >Remote access to MATLAB 2020a of QT004.
- >Lecturer and Teaching Assistant will be physically in QT004 to assist the tutorial online.
- >using the "Win10 (Reserved)" pool of computers
- >use the "7x24" group for test

SEC

Remote Desktop Access Instructions

Remote Desktop Access Instructions

3. After successful log-in, you should be able to see the basic start up screen.

Remote Desktop Access Instructions

Q&A

Thank you for your attention \odot Q&A

Dr. Weisong Wen

If you have any questions or inquiries, please feel free to contact me.

Email: welson.wen@polyu.edu.hk

Camera Calibration

Calibration of camera

Algorithm: Zhang Zhengyou Calibration^[1]

Advantages: The equipment is simple, just a printed checkerboard; High precision, relative error can be lower than 0.3%;

He received the IEEE Helmholtz Time Test Award for "Zhang's Calibration Method" in 2013

A very famous expert in computer vision and multimedia technology

[1] Zhang, Zhengyou. "A flexible new technique for camera calibration." *IEEE Transactions on pattern analysis* 51 *and machine intelligence* 22.11 (2000): 1330-1334. Opening Minds · Shaping the Future · 啟迪思維 · 成就未來

How to all these unknow parameters?

The process of calculate all these parameters is called camera calibration!

Camera Calibration

Calibration of camera

f_u 0 Δ u 0 f_v Δv 0 0 1

 $= Kp^C \quad \int s p^I = Kp^C$

 $sp^{\mathrm{I}} = \mathbf{K}(\mathbf{T}_{w}^{c}\mathbf{p}^{\mathrm{w}})$

 \overline{u} \mathcal{V} 1

 z^{C}

=

 \overline{u} \mathcal{V} 1 1

 z^{C}

Algorithm: Zhang Zhengyou Calibration^[1]

 x^{C} y^{C}

 z^{C}

 x^{w}

[1] Zhang, Zhengyou. "A flexible new technique for camera calibration." *IEEE Transactions on pattern analysis* 53 *and machine intelligence* 22.11 (2000): 1330-1334. Opening Minds · Shaping the Future · 啟迪思維 · 成就未來

54

[1] Zhang, Zhengyou. "A flexible new technique for camera calibration." *IEEE Transactions on pattern analysis and machine intelligence* 22.11 (2000): 1330-1334. Opening Minds · Shaping the Future · 啟迪思維 · 成就未來

[2] Multiple View Geometry in Computer Vision

Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

Homograph Matrix

Image Stitching

perspective change

$$
s\begin{bmatrix}u\\v\\1\end{bmatrix} = \mathbf{K}[\mathbf{r}_x, \mathbf{r}_y, \mathbf{t}]\begin{bmatrix}x^w\\y^w\\1\end{bmatrix}
$$

Homography matrix

Note that rotation matrix is a orthogonal matrix

Calibration of camera

 $r_x = sK^{-1} h_1$ $r_y = sK^{-1} h_2$

 r_x ^T $r_y = 0$ $||r_x|| = r_x r_x^T = 1$ $||r_y|| = r_y r_y^T = 1$

Note that rotation matrix is a **unitary matrix**

 $H = (h_1, h_2, h_3) =$ $\mathbf{1}$ \boldsymbol{S} ${\bf K}[{\rm r}_x,{\rm r}_y,{\bf t}]$ $r_x = sK^{-1} h_1$ $r_y = sK^{-1} h_2$ How to solve?

$$
\begin{cases}\n\mathbf{h}_1^{\mathrm{T}} \mathbf{K}^{-\mathrm{T}} \mathbf{K}^{-1} \mathbf{h}_2 = 0 \\
\mathbf{h}_1^{\mathrm{T}} \mathbf{K}^{-\mathrm{T}} \mathbf{K}^{-1} \mathbf{h}_1 = \mathbf{h}_2^{\mathrm{T}} \mathbf{K}^{-\mathrm{T}} \mathbf{K}^{-1} \mathbf{h}_2\n\end{cases}
$$

To solve camera intrinsic, there are 5 unknown variables

• How many Homograph (H) do we need?

Calibration of camera

$$
\begin{aligned}\n\mathbf{H} &= (\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3) = \frac{1}{s} \mathbf{K} [\mathbf{r}_x, \mathbf{r}_y, \mathbf{t}] \\
\hline\n\mathbf{h}_1^T \mathbf{K}^{-T} \mathbf{K}^{-1} \mathbf{h}_2 &= 0 \\
\mathbf{h}_1^T \mathbf{K}^{-T} \mathbf{K}^{-1} \mathbf{h}_1 &= \mathbf{h}_2^T \mathbf{K}^{-T} \mathbf{K}^{-1} \mathbf{h}_2 \\
\hline\n\begin{bmatrix}\n\mathbf{f}_u & \mathbf{Y} & \Delta \mathbf{u} \\
\mathbf{0} & \mathbf{f}_v & \Delta \mathbf{v} \\
\mathbf{0} & \mathbf{0} & 1\n\end{bmatrix}\n\end{aligned}
$$
\nEncode the distortion

distortion parameter

 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

A: We need at least 3 Homograph matrix Checkboard

World frame

When calibration, we take at least 3 pictures of the Image plane **checkboard in different position**

Opening Minds · Shaping the Future · 啟迪思維 · 成就未來

Camera frame

Calibration of camera

$$
h_1^T \mathbf{K}^{-T} \mathbf{K}^{-1} h_2 = 0
$$

$$
h_1^T \mathbf{K}^{-T} \mathbf{K}^{-1} h_1 = h_2^T \mathbf{K}^{-T} \mathbf{K}^{-1} h_2
$$

Assuming we have taken at least 3 pictures of the checkboard in different position

[1] Zhang, Zhengyou. "A flexible new technique for camera calibration." *IEEE Transactions on pattern analysis and machine intelligence* 22.11 (2000): 1330-1334.Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

$$
K = \begin{bmatrix} f_u & Y & \Delta u \\ 0 & f_v & \Delta v \\ 0 & 0 & 1 \end{bmatrix}
$$

The distortion parameter

Define:
$$
\mathbf{B} = \mathbf{K}^{-T} \mathbf{K}^{-1}
$$

$$
= \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{bmatrix}
$$

Calibration of camera

Noted that B is symmetric, defined by a 6D vector

$$
\begin{bmatrix} B_{11} & B_{12} & B_{13} \ B_{12} & B_{13} \end{bmatrix} \qquad \mathbf{b} = [B_{11}, B_{12}, B_{22}, B_{13}, B_{23}, B_{33}]^T
$$

Calibration of camera

$$
\mathbf{H} = (h_1, h_2, h_3) = \frac{1}{s} \mathbf{K} [r_x, r_y, \mathbf{t}]
$$

Let the i th column vector of H be: $h_i = [h_{i1}, h_{i2}, h_{i3}]^T$ Then, we have

$$
\begin{cases}\n\mathbf{h}_1^{\mathrm{T}} \mathbf{K}^{-\mathrm{T}} \mathbf{K}^{-1} \mathbf{h}_2 = 0 \\
\mathbf{h}_1^{\mathrm{T}} \mathbf{K}^{-\mathrm{T}} \mathbf{K}^{-1} \mathbf{h}_1 = \mathbf{h}_2^{\mathrm{T}} \mathbf{K}^{-\mathrm{T}} \mathbf{K}^{-1} \mathbf{h}_2\n\end{cases}
$$

$$
\mathbf{v}_{ij} = [h_{i1}h_{j1}, h_{i1}h_{j2} + h_{i2}h_{j1}, h_{i2}h_{j2},
$$

$$
h_{i3}h_{j1} + h_{i1}h_{j3}, h_{i3}h_{j2} + h_{i2}h_{j3}, h_{i3}h_{j3}]^T
$$

$$
h_i^T Bh_j = v_{ij}^T b
$$

b = [B_{11} , B_{12} , B_{22} , B_{13} , B_{23} , B_{33}]^T

$$
\begin{bmatrix} \mathbf{v}_{12}^T \\ (\mathbf{v}_{11} - \mathbf{v}_{22}) \end{bmatrix} \mathbf{b} = 0
$$

Calibration of camera

$$
\begin{bmatrix} \mathbf{v}_{12}^T \\ (\mathbf{v}_{11} - \mathbf{v}_{22}) \end{bmatrix} \mathbf{b} = 0
$$

The equation on the left side can be solved by SVD Decomposition^[1]

$$
\begin{matrix} f_u~,f_v~, \Delta u, \Delta v\\ ~ ~ ~ ~ s, Y \end{matrix}
$$

If n images of the checkboard are observed, by stacking n such equations as above we have:

 $V^h = 0$

V is a $2n \times 6$ matrix

b is a 6D vector

[1] Zhang, Zhengyou. "A flexible new technique for camera calibration." *IEEE Transactions on pattern analysis and machine intelligence* 22.11 (2000): 1330-1334.Opening Minds • Shaping the Future • 啟迪思維 • 成就未來