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State Estimation: Factor Graph

for Integrated Navigation I
AAE4203 — Guidance and Navigation

Dr Weisong Wen
Research Assistant Professor

Department of Aeronautical and Aviation Engineering
The Hong Kong Polytechnic University
Week 11, 30 Mar 2022
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About the Assignment 2

Answer-to:'AAF4203 Guidance'and Navigation<’

Assignment-2¢

Submission -Pmtallr

Please- scan- your hand-written- work  and- submut- it m- PDF- format to my email

(welson wen(@polyu.edu hk) - <
Deadline~
Please submit the-assignment-on-or-before 102-April 2022 <

o

Question-1-(20-marks)

Given the stereo camera model-as Fig_-1.-The-baseline-distance - b, between the two-cameras-1s-0.01-

meters. The focal length fis460. <

(1y»Given-a-3D feature-that-1s-captured-by-both-the-left-and right-camera, the-pixel-locations-of-the-

features in the left image are (30, 100) and (30, 300).- What is the depth of the 3D feature? (10
marks)«

(2)»Given-the image-size of the left-and right camera-as- 460 % 460, -what-is the maximum-depth the-

stereo-camera-can measure?-(5 -marks)<'

(3)*Describe the key-drawbacks-of the stereo-camera for depth calculation. (5 - marks)+

. / Baselineb

A

v¥ Interdisciplinary Division of
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Question 2 (30 marks)
Given the pinhole model of the monocular camera as Fig. 2. Given a feature with pixel location

(200,300),
(1) Describe the reason behind the image distortion, the radial and tangential distortion (3 marks)

(2) The parameters for the radial distortion are k1 = —0.046,k2 = 0.013,k3 = 0.012 . The
parameters for the tangential distortion are pl = —0.03,p2 = 0.02. What is the undistorted
location of the pixel? (10 marks)

(3) The depth of the feature is 10 meters. The intrinsic parameters of the camera are f, = 264.9,f, =
264.7,Au = 334.39,Av = 183.39. What 1s the mirinsic matrix of the camera? Based on the
undistorted location in (2). what is the 3D location of the feature in the camera frame? (10 marks)

(4) Based on the 3D location of the feature calculated in (3), what is the 3D location of the feature
after applying the rotation (R) and translation (t) matrix as below? (7 marks)

0 -1 0 2
10 O]andt:[s]
0 0 1 7

Camera

Camera-body frame 2

Figure 2. Illustration of the pinhole camera model.
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Group Presentation
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>https.//docs.google.com/document/d/1RujUcD1s

NyUs31-2Bucn20h990A8EtTBhY?2J-XJfeDw/edit

3

Wen, Weisong, Tim Pfeifer, Xiwei Bai, and Li-Ta Hsu. "Factor
graph optimization for GNSS/INS integration: A companson with
the extended Kalman filter." NAVIGATION, Journal of the Institute
of Navigation 68, no. 2 (2021): 315-331.

Ll Zhengdao
(18081447D)
SU Meiling

(19083997D)

GNSS Real-time Kinematic Positioning for Autonomous Driving

Kwok Yiu (20096834D)
Lam Cho
Yi(20099376D)

1"

B.Xu, Q. iaand L. -T. Hsu, "Vector Tracking Loop-Based GINSS
NLOS Detection and Correction: Algonithm Design and Performance
Analysis," in IEEE Transactions on Instrumentation and Measurement,
vol. 69, no. 7, pp. 4604-4619, July 2020, do1:

10,1109/ TINL 2019 2950578.

Marcelino Jason
(18079168d)
ZHANG Cheng chen
(19078955d)

FANG Jingxiaotao
(18081477d) | 3
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> Factor Graph Optimization
 From MAP to Factor Graph Optimization

« Solving the Factor Graph Optimization
* Gradient Descent
* Newton Method
« Gauss-Newton
» Levenberg-Marquardt Method

« GNSS Positioning with Factor Graph Optimization

>Supplementary: GNSS/INS Integration Using Kalman
Filtering and Factor Graph Optimization

* BB BAE - RLRR
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How the Sensor Fusion Problem Looks like...

>GPS provide the positionin x,y, z

>IMU provide the linear angular m—
velocity in x,y, z - -

>GPS Doppler provide velocity in =~ | & &

X,¥,Z E
n n n n = u ‘
>Visual positioning provide relative
motion Ax, Ay, Az How to achieve this sensor fusion by

combining the positioning from different
sources?

uture * F3E B4 « 5L LR R
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State Estimation Methods FOR ROBOTICS

] ] Kalman Filtering
* First Order-Markov Assumption
» (Gaussian noise assumption /4 —
— Extended Kalman
F|Iter|ng_-bas§d Filtering
State Estimation
Maximum A 1 Unscented Kalman
i Filterin
FEELET () * First Order-Markov 5
Assumption TIMOTHY D.
Factor Graph BARFOOT
Optimization-based / Optimization
+ Gaussian noise State Estimation
assumption
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Basics for Probabillistic

Event A and B. P(A) denotes the probability that the event A happens.

P(A|B)P(B)
P(A)

P(B|A) = PP(A) mmmm) P(AB) = P(B|A)P(A) mmmmm) P (B|A) =

Event z denotes the measurements. P(z) denotes the probability that the event A happens.

P(ZOI reey Zlek)P(Xk)

POl o ) = = )

The probabilistic view of the state estimation is: given a set of
measurements (Zo, -, Zg), can we find a best state x;, to
maximize the conditional probabilistic P(xy|Z1, -+, Zg)? ;

R A - LR AR

Opening Minds * Shaping the Future *
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Estimation Formulation u;: IMU Measurement

z;: GNSS measurement

Uy uq Uy
XO Xl | | | | | ] k_l
Zi_q Zy

Z Zq Z,

States set
X = {X0,X1,X2,", Xk} The maximum a posteriori (MAP) estimate is given by

Optimal State set
%= arg max(PIZ V) PIZ,U) = | | P@ailxio) PGxo) | | POiliems o)
\_/ k k

Bayesian theory 8
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How to understand the P(Zo, -, Zg|x;)

multipath effects, NLOS
receptions, receiver noise,
antenna phase-related noise

pﬁ,t = Trs,t + C(Sr,t — 81s~,t) + f}t + T,:q,t + Ef’t (0~100m)

Pseudorange 34 i \ \4 \

Range Receiver clock Satellite clock ionospheric delay tropospheric delay
distance  Bias (1~2m) bias Distance (1~2m)  Distance (1~2m)

Observation function for pseudorange (code) measurement

w W

otk

G,
P — Pyl

) g
/ (), 0, 200

pro m—) 77,  pf, mmmm) xC,
P(Zo, - Zi|xp)P(Xy)
P(Zo, -» Zg)

Formulate the P(Xg|Z1, -+, Zg) for the
GNSS pseudorange measurements!

{p(k]}: Pseudoranges (measurements)
{(xh), ytk), Zlk))): Satellite positions (known)

P(xlZ1, w0 Zk) =

o =+ (PP (-7 - b
k=1,2,..K

If K> 4, solve for user position (x, y, z),
and receiver clock bias b 9
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From MAP Estimate to Factor Graph Optimization (FGO)

Maximum a posteriori (MAP) estimate is given by E 2 - f """ :—I )
r
PXIZU) = | | P(zlx) Pto) | | PGlxems, mie-)
k k

Assumption |

Gaussian
noise model Xj = j(XJ'—l'“j) + w;
z, = hp(xp) + v

ﬂ Factorization
F propagation

P (X |Xje—1, Ug—1) =exp(|[fx (Xp—1, ur) — Xk”%u,k)
F

update

. - 2
P(zy |x5) =exp(|[hy (xx) — Zk”)%z'k) Zk: i (K1, W) = XI5,

PN Factor in graph

PUIZ W) o | [ FETo G0 R ()
k

Find the maximum
likelihood-> optimization

X = arg maank(xk) = argmine(y)
X X
k

El Graph construction

e(x) = 2 |1h,(x,) — Zk||§k +
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From MAP Estimate to Factor Graph Optimization (FGO)

: @ . @ .
1 k
@ . l . B . @

Factor
Z Zq Z, Zi_q Zy

u

Factor in graph

P(x|Z,U) « 1_[ FETO (%, ) FeP4 (%) e(Q0) = 2 [ Ge) — 7|15, +
k

f, (X, U;) — X, ||
Find the maximum ::> zk:ll e (Xie-1, i) llz

likelihood-> optimization 11
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Factor Graph Optimization in GNSS

>Example of the GNSS loosely-coupled
pseudorange/Doppler integration using
Kalman filtering and factor graph optimization

>Example of the GNSS tightly-coupled
pseudorange/Doppler integration using factor
graph optimization




Batch (including all the data in the pasty Optimization
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v

13
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Batch (including all the data in the past) optimization

[
»

14
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Batch (including all the data in the past) optimization

v

15
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Kalman Filter Optimization
SRy

15t order Markov Chain

v

17
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How to solve the optimization problem?

Non-linear optimization iteratively obtain the

U N\ u; e . .
Q'D > X, 6?‘ ’%} optimal solution

: s : ) 2y g ay gy 0D AFGU) p

ox ox
d
P(XIZ,U) x nFﬁp (X ) Fie ™ (%) Using Levenberg-Marquardt algorithm (LM)
k
_ (3T —1or 0
Find the maximum Ax = (]R]R T “I) JR ((H(x( )) N Z))
likelihood-> optimization

g =y if (n+1)) _ (n)Y <
X= argmaank(xk) = argmin e()) X =x™, ife(x™) —e(x™) <e
X X
k

- 2 2
e(x) = Xy |1 (xp) — Z ||z, + Dk Nk (Xpe—1, ug) — Xill5,
7 Spemrg Wiaisr Shaping e Putury s SBAEE - F 8 AL

Dellaert, Frank, and Michael Kaess. "Factor graphs for robot perception.” Foundations and Trendg#
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Non-Statistical Method — Least Square

Linear Least

v

Least Square

Square

% = arg min||h(x) — z||° % =h"1(z) = Hz = (HTH) H"z

X

1 1
R = —arg min||h(x) — z||?| = = arg min e(x)

- 2 X 2 X
| Non-Linear Least
. S 1 1

s de(x) d5(Hx—12)* d7(Hx—12)*d(Hx - z)
| Gradient Descent dx dx = d(HX — z) dx =0

Method \ \
| Gauss-Newton (Hx — Z)(HT) -0

Method HTHx = HTz
R Levenberg- X = (HTH)—lHTZ <

Marquardt Methaod

./ Opening Minds * Shaping the Future » E i .8 + & 3t %
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NLS — Gradient Descent Residual error

Non-Linear Least

1 1
o - — 2 = -
X=3 argxmmll (x) — z|| > argxmm e((x)

Square Initialize
x = x(
Gradient Descent R Jacobian
Method Matrix xD = xO) 4 qJOd JOd < o 'terateby
’ descending the state
" deq deq T a: step size
0 0
6x£ ) axfn) d: unit vector of descends
] - : : ) 1 ) 2
de, de, e(x( )) =3 ||h(x( )) — z||

6x(0) ax(o)
B 1 m A

g =xM, ife(xD) —e(xW) < ¢

the matrix of all its first-order partial .. tnreshold for iteration

derivatives, the gradient of model.

Opening Minds * Shaping the Future * il B # « Bt K R



The square matrix of second-order
partial derivatives of a scalar-valued
function, the gradient of the gradient
model, the acceleration.
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'l ‘l J z{ *" / ﬂ/ﬂ'lnch|wlpllnan Division of Qb THE HONG KONG

POLYTECHNIC UNIVERSITY

M Acronautical and Aviation Engincering QE
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NLS — Newton Method
: Expand the error function of Taylor series and
Non-L ~ —
Le;)_:t ISISSZ:e e(x) = [|h(x) — zll take the second-order
L Hessian e) ( ) ( )
Newton Method > . de(x(© 19%e(x© 5
0 0) 0
Matrix e(x( )) + W(x X( ) + — > aZX(O) (X — x( ))
d%e d%e )
P 2
0x,0x, 0x10%,, e(x) = e(x@) +J(x —x@) + E.‘H‘(x —x(@)
H = : :
1
0% 0% e(x) = e(x(@) + JAx + E}[AXZ
|0x10x,, 0% 0%, ]

Find a AX to achieve least square of error function
de(x)

o= A HAX =0 —— > Ax=—=—H]T

x(D = xO0 4 Ax = x(0) — g1

] b Minds + Shaping the Future « B3l B # - 5 3% &k 3
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NLS — Gauss- Newton Method (approximation of Newton

method to reduce computation load of Hessian matrix)

Non-Linear

| east ISquare

»

Gauss-Newton
Method

y

First order on
the residual
function

v

Hessian Matrix

Expand the error function of Taylor series from x(9) + Ax
and take the first-order so that we found the best x

h(x<o>+Ax) A(x(@) + 20 (ax )—h(x(o))+]RAx 2

X = rg mln— ||h(x) —z||? = arg mln— ||(h(x(0)) + ]RAX) — z||

-
- o

de(x+4%) | ]RAx - JE(h(x®) - )
0AX

AX = —(]E]R)_llg(h(x(o)) —z) = —3H1JT From Newton method

£ x4 ax =2 (1) ) -2) o) =3I ol |
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NLS — Levenberg Marquardt Method

Jacobian Matrix: slow but accurate (Gradient decent )
Hessian Matrix: fast but less accurate (Gauss-Newton)

Non-Tinear Teast | Ax = —(Jf1z) JE(A(x®) — z) By Gauss-Newton

Squyare
(U051R)Axen = JRR(R(x?) — 2)

2
,;«"”-.-//‘ :

Levenberg-
Marquardt Method

) O8Ik + 1) dxy = JE(R(x) —2),u > 0

Jacobian + u: damping factor, to benefit between Jacobian + Hessian Matrix
Hessian Matrix

If uis very large than it becomes Gradient decent
If i is very small than it becomes Gauss-Newton

~1
Open-source solvers: x( = xO + Ax = xO —(JzJp +ul) R ((h(x(o)) - Z))
Ceres (by Google) and GSTAM (by Carnegie Mellon)

" Opening Minds * Shaping the Future » B B & » & #t #
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Factor Graph Optimization in GNSS

>Example of solving the GNSS loosely-coupled
pseudorange/Doppler integration using factor
graph optimization using the Levenberg-
Marquardt Method

>Example of the GNSS tightly-coupled
pseudorange/Doppler integration using factor
graph optimization
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EKF vs FGO E;ioobrability
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Posterior

>~ Both EKFE and EGO are MAP @ Xk @ Srobability

> EKF simplified MAP based on two assumptions BT
« 1st order Markov chain probability
. ) Z
« Gaussian random noise k

Propagation

)

G)
=
C:)
N
.
>
S
l
=
L
@
=)

25
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Theoretical Comparison

REIBEQERS

EKF FGO
Assumption in J NE
Gaussian Noise it
. Main differences are:

Assumption In
15t Order Markov Chain v < L. FGO Uses baFCh dgta

2. FGO applies iterative
Solved by  optimization
lterative Non-linear v
Optimization '
* Not strict. Only if we wish to solve FGO by NLS.

Cons: Pros:

W. Wen, T. Pfeifer, X. Bai, L-T. Hsu, Factor graph Computational Robust when two
optimization for GNSS/INS integration: A comparison expansive assumptions are violated

with the extended Kalman filter.
NAVIGATION, 2021; 68( 2): 315- 331.

26
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Experimental Setup
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GNSS: ublox

M8T (1Hz)
IMU: Xsens GPS L1 and Beidou B1

MTi 10 (100Hz)

Reference:
i ~ NovAtel SPAN-

CPT(1H2)

FGO solver: Linux ROS, C++, GTSAM. Both EKF and FGO compared in
EKF solver: Linux ROS, C++, Eigen. * Tightly coupled (TC) GNSS/INS,

* BB BAE - RLRR
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EKF vs FGO (TC GNSS- INS)

traJectory

2D error
: : : 50 . : :

1507 ' ] —— tightly EKF
_ 100t .
g —&— tightly EKF
° —e— tightly FGO
E 50 B
S —o— reference
=
S Of
C

-50 1

50 0 50 100 150 200 0 50 100 150 200
east (meters)
2D error: Tightly EKF vs. FGO
Mean: 8.03—> 3.64 meters

Std: 7.60 = 3.19 meters 28

/" Opening Minds + Shaping the Future « 53l B # « & 3 &k %

250 300
time (seconds)
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Tightly EKF vs FGO in terms of Residual

1(%DOS,eudorange residual for tightly coupled GNSS/INS 5 2D error
—o— Tightly EKF . —5/ tightly EKF
80 | —o— Tightly/(a'c?tpr graph| | 40 | —1— tightly FGO|
( l A ' ‘
! 1
w 60r l'
S !
o I
40 | 4,
20 | )
0 100 200 300 0 50 100 150 200 250 300
epoch (seconds) time (seconds)
Residual calculation Residual: Tightly EKF vs. FGO
Mean: 16.72-> 5.98 meters 29

Nsat
f
Prrc = 1/Nsqe Zi=1 ||(pI€,IiVSS - hGNSS'TC(SVk,i'Xi,Cre '5li,lr0Ck))”1 Std: 14.98 = 2.71 meters M
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teration using a smgle epoch of v
data in FGO
Main differences are: Xo /x;\ Q%* ''''' - @ ?
2: FGO applies iterative \I/

optimization Zo

while EKF recursively

estimate — Tightly EKF (2D error: 8.30m) If we considering batch data
60 — Tightly FGO with Windows size: 1s (2D e _

L 5 10 | 30 | batch
w size

L

% FGO 5.18m | 4.53m | 3.95m | 3.74m | 3.65m

EKE 8.30
m

0 100 200 300
epoch (seconds)
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Theoretical Comparison 210N WEBINAR

EKF FGO “Factor Graph Optimization for GNSS/INS
P Integration: A Comparison with the
Assumption In :
>sU _pt on i v v . Extended Kalman Filter”

GaUSS|an NOISG (I’]Ot St”Ct) Weisong Wen, Tim Pfeifer, Xiwei Bai and Li-Ta Hsu
Assumption in N RRESEH V.
15t Order Markov Chain i b it~
Solved by ‘
lterative Non-linear \ Dgtails (derivations and implementation)
Optimization Video can be found at ION YouTube Channel

Main differences are: Cons: Pros:

%' Egg gseﬁebsaittcehr;?\f: Computational  Robust when two

' PP expansive assumptions are violated

optimization

W. Wen, T. Pfeifer, X. Bai, L-T. Hsu, Factor graph optimization for GNSS/INS integration: A comparison with
the extended Kalman filter. NAVIGATION, 2021; 68( 2): 315— 331.

31
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https://www.youtube.com/watch?v=f5bIh96SRsk

021 9562057

021 TEEE| DOL 10 110¥ICRASS 56

021 IEEE Intemational Confesence on Robotica and Aummation (ICRA) | 978-1-7281 9077821531 00

2021 EEE International
May 31 - June 4, 2021, Xi'an, Chin;

fference on Robotics and Automation (ICRA 2021)
jina

Towards Robust GNSS Positioning and Real-time Kinematic Using
Factor Graph Optimization

Weisong Wen and Li-Ta Hsu*

Absmaci— Global navigation satellite systems (GNSS) are

e of the popular sources for providing globally
relerencel positonng for sutonotnows -ysem:. Howerer, e

ml(h:nnnwns m.mm.mxmmmmum
buildings. Given the fact that the GNSS measurements are
highly environmentally dependent and time-correlated, the
conventional filtering based mefhod for GNSS positioning
camnot simultaneously explore the time-correlation among
bistorical measurements As a resulf, the flteringbased
estimator is semsitive to unerpected outlier measurements. In
this. paper, we present a factor graph-based formulation for
GNSS positioning and realfime linematic (RTK). The
formulated factor graph framework effectively explores the
fime-correlaion of pewdorange, carrier phase, amd doppler

approach [4]is to use an extended Kalman filter (EXF) [6] to
estimate the float solution and the doble-differenced (DD}
carier-phase ambiguity bizs based on the DD psendoranze
and carrier-phase measurements. Meamwhile, the LAMEDA
algorithm [7] is employed to resolve the integer ambiguity to
further achieve 3 fixed solution leading to centimeter-level
accurscy. In short, the EKF dominates both the GNSS
positionng and the GNSS-RTK posifioning. due fo the
matunty and efficiency of the EKF estimator. Satisfactory
performance can be obiained for GNSS RTE (-5 centimeters)
incpen-cey e whmame.m,ummwmbgdmnmm,

rential techniques. Us ces of
o a5 positioning and GNSS RTK st semifeanly
dezraded in whan canyons [8] which are mairly due to the
owier mewwraments, g from the mrltpats effect amd

and leads to the

the GNSS receiver. The feasibility of the proposed method is
evaluated using datasets collected in challenging urban canyons
of Hong Kong and significantly improved positioning accuracy
is obtained, compared with the fltering based estimator.

1 Iemropuemion

Global navigation satellite system (GN'SS) [1] is cumrextly
one of the major sowces for providing globally referenced
positioning for amtonomous systems with DaviEgat

requizements, zuch 2 the unmanned serial vehicle (UAV) [2],
autonomous driving vebicles (ADV) [3]. With the mcreazed
Fralability of multconselstions, the GNSS_soluon

faght (NLOS) [9] receptions coused by the
hrul.ld.\ng reflection and blockage. To miigate the effects of
GNSS outliers fom NLOS receptions and multipath effects,
umerous methods ave studied, suck as the 3D mapping aided
GNSS (3DMA GNSS) [10-12]. the 3D LiDAR zided GNSS
‘positioning [13-16]. and the camera sided GNSS positioming
[l 17]. However, these methods rely heavily on the
availatulity of 3D mspping information or additional sensors.

Tnterestingly, instead of estimating the state of the GNSS
Teceiver mainly based on the observation at the cumrent epoch
recursively via the EKF estimator, the recent researches [18-
21] propose the factor eraph-based fornnulation to process the
GNSs and

becomes. In general the
mthods mvolve. GRES posionng and GNSS seal sme
kinematic (RTK) positioning

The popular GNSS positioning method is o we the
extended Kalman filter (EKF) [4] to estimate the po:
velocity, and time of the GNSS receiver
simultmeously based on the available GNSS measurements.
Gunerl positoning accursy (10 maer) [5] can be
obtained in open <ky areas. The remaining emvor is mainly
cansed by the ionosphere error, troposphere error and satellite
clock/arbit biases, ste. To increase the accuracy of the GNSS
positioning, RTK is proposed to perform GNSS positioning
which can deliver centimeter-level positioning accwracy. The
GNSS-RTK remove: the emor: (including the emors
mentioned above and the recerver clock offset) usng the
double-difference techique based on the cbservations (o2
and received fom
B e Gt e positioning algorithm
mainly inchides two steps, the float solution estination. md
camierphae integer ambigwity resoluion. A common

Weisonz Wen and Li-Ta Hax are with the Hong Kong Polyechaic
University., Honz. Lm; (comesponding authar fo provide e-mail
ithsyapolyu edu bk

mproved performance i achieved, compared with the
conventional EKF. The work [22] by a team from the
Chemuitz University of Technology was the first paper
utilizing factor graph optimization (FGO) i GHNSS
‘positioning. Howsver, cnly the pseudorange measurements
were conmdered Then their confimous works focused on
developing 3 robust model [23-25] for mitigating the effect:
of the potential NLOS receptions. Interestingly. 2 team from
West Virginia University camied out similar researches [20,
26, 27], applying FGO models to GNSS precise point
positioning (PFP) and obtaining sigmificantly improved
vesults. Irspired by the significant improvement arising from
FGO, owr previows work [28] extensively evahuated the
performance of the integration of GNSS psendorange and
mertial measurement umt using EKF and FGO. Owr
finding showed that the FGO could explore the time-
comelation among the emviromment dependant GNSS
leading to
mproved robustmes: against outliers, compared with the
EKF-based estimator. However, the potential of FGO in

9m-1m-sn7r-w21m1.wmnz1 IEEE e84

g Kong Dounioased on March 18,2022 3034204 UTG rom IEEE Xplare. Restfictions 3pply.
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whu!r‘:lsdngmmrrangehememhm]hm and the
G\ISS receiver. I, represents the ionosphenc delay distance;

7; mdicates the tropospheric ddxy distance. &7 represents

satellite systems that we used include the global positioning
ystem (GPS) and BeiDon Besides, we follow the methods
used in RTKLIB [4] to model the atmosphere effects (1, and
T5)

Given the Doppler mesmrement (d,d2,,..) of sach
satellite at an epoch ¢, the velocity (v,.,) of the GNSS recaiver
can be calenlated using the LS method [30]. Giving that the
state of the velocity, x, is as follows:

xE = (e Bre) @
where the v;,, represents the velocity of the GNSS recerver.
The varizble §; stands for the recerver clock dnft The
range rate measwement vector (i) at an epoch ¢ is
expressed as follows
¥iie = (Adp AdF AdY )T @)
where the A denotes the camier wavelengih of the satellite

Doppler measmrements ars expressed as follows:

s B =8l

ks B — Bl

HAE) = |ty 48, = 83 @
o+ 8, — 8
With 3 = hGef) s

where the superscript m denotes the total mmber of satellites
and the variable w, stands for the noise associated with the
2. The variable rr/% denotes the expacted range rate. The
varizbles 8. and 87 represent the receiver and satellite clock
bias drift. The Jacobizn matrix Hf for the observation fimetion
h4{x) is denoted as follows:

Biubrax PlyPray Plepras

IPe-pedl  IPE-Peall llpE-peall

Mapas Py st |
ez Ipi-pedl  Tof-poel  ToE-poall )
T |PlaPres PlyBeay PlaBras

el Ted—peal

Plloprex pimar

It —pral IP—prel

e the operator ] i eaployed to cleulte e rnge

tween the given satellite and the GNSS receiver.
mmmg wte 77, for satellite 5 cam also be
calculated 2 follows:

e = O (W = i) + SR (v 4 Py —
Lps) 6

<
Pea¥rey =

v¥ Interdisciplinary Division of
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where the varisble wy;,, denotes the angular velocity of the
eath rotation [4]. The variable ¢, denotes the speed of the
light The variable e3/%¥ denotes the line-of-sight vector
connecting the GNSS receiver and fhe safellie (See equstion
(5)). Therefore, the velocity (v, ;) of the GNSS raceiver can be
estimated via LS [4] based on equations (4) and (5).

stucture of the proposed factor graph for
solving the GNSS positioning is shown in Fig. 2. The subscript
1 denotes the total epochs of measurements considered in the
FGO. Each state in the factor graph is cornected using the
Doppler velocity factor. The state of the GNSS receiver is
represented as follows:

¥ = Fru Xz - ea] @]

e = (Prao Ve Br)T @
where the variable y denotes the set states of the GNSS
receiver from the first epoch to the current n. The x,,; denofes
the state of the GNSS receiver at epoch 1 which imvolves the
‘position (, ), veloeity (v, ) and receiver clock bias (5, ,).

) sememade Feaulocuge
G st @ P

Dogpler Veloity
- Factes

Fig. 2 The purple circle denotes the psendorange factor (2.2
&%) The blus shaded rectangle represents the Dopplar
velocity factor (e g of"). The yellow shaded circle stands for
the stafe of the GNSS receiver.

The obsarvaton medel for GNSS

mean exror decreases to only 9.45 meters after applying the
FGO with 2 significantly decreased STD of 8.06 meters
Meanwhile, the maximum emor decreases to only 31.94
meters. The significantly improved posifioning accuracy
<hows the effectiveness of the proposed framework based on
FGO.

Fiz 5 shows the trajectories using three different
methods nd ground trath. The black curve denotes the
ground truth trajectory provided by the SPAN-CPT The
=moother frajectory is achieved using EKF with the help of
velocity measurersents, compared with the WLS. However,
the trajectory can still deviate significantly from the eround
truth trajectory in some epochs. With the help of the proposed
framework, 2 smoother fjectory is obtained almost
throughout the test

Table.1 GNSS positioning performance using the three Listed
‘methods

All data WL EKF FGO
MEAN (m) 7- 1361 545
STD () 6. 15.19 806

MAX (m) 54.4 3897 3194
ilabili 00% 100% 100%

narth (meters)

B0 4 e 200 00 B 100 20
el {metoes)

gven satellite s
Pis = hia(PreoPE Bre) + 0 @
with B (Br.eo s 8r.c) = |IPE = Prell + 8re

where the varisble w}., stands for the noise associated with the
5. Therefore, we can get the smor function (e7 ) for a given
satellite measurement p7 ; as follows:

llezallEs, = llofe — Bie(propf 8o )llfy, (O
where E7, denotes the covariance matrix. We calculate the
£7, based on the satellite slevation anele, signal, md noise

ratio (SNR) following the work m [31]. The observation model
for the veloaty (v} is expressed =5 fallows:

SHED SH SR S an

use imit=d fo: Hang Kong Unvessiy.

March 16,2022 3t 03:42 04 UTC from IEEE Xpiore. Restrictions apply.

Fig. § Trajectories of three methods WLS (red), EKF (green),
and FGO (blue). The x-xis and y-axis denote the exst and
north directions, respectively.

B. Evaluation of the Proposed GNSS-RTK.

During the static fest in whan canyon 2, the Doppler
velocity measurements are employed fo comects the
consecutive states. The positioning accuracy of GNSS-RTK
in the evaluated dataset is shown in the following Table 2. Be
noted that the float solution is recorded when the fixed
olution is ot valsble. & mean of 201 smetar: & ctined
using RTK-EKF with an STD of 0.67 meters.

i o seaches 33 e The e s
decreases to only 0.64 meters after applying the RTK-FGO

THE HONG KONG
P()LY'J'ECHI\‘IC UNIVERSITY
%? o TR B

methods and gound truth, The more accurate frajectory is
achieved using RTK-FGO with the help of velocity
meastremexts, compared with the RTK-EKF. We can see
oo Takle 2 ot she RTK-EKF gets 3 e rate of 4.4% e
the evaluated wban canyon 2. Inferestingly, the fixed rate of
the proposed RTK-FGO is slightly decreased to 3.8%. The
reasan is that the proposed RTK-FGO did not consider the
cycle slip defection [33] and the ambiguity is solved
independently in each epach.

Tahble 2 Positioning performance of the GNSS-RTK.

All data RTK-EKF RTK-FGO
MEAN (m) 0.64
STD (m) 040
MAX (m) 170
Availab 100%
Fixed Rate 38%
g

RTKERF
- RT(FGO |

north (meters)

05 1 15
sast{metecs)

Fig. 6 Positioning results of two methods RTK-EKF (red dots)
and RTK-FGO (blue dots).

'V.CONCLUSION AND FUTURE WORK

per developed 3 factor graph-based formulation,
Mmblﬁﬂmc:pzb)hky of the two most popular positioning
methods, the GNSS positionmg, ad GNSS-RIK. We
evaluate the proposed framework using the dataset collected
in the urban cazyons of Hong Kong. The results show that the
proposed mathod can effectrvely help to mifigate the effects
of GNSS outlier measirements, improved accuracy
both in GNSS pesitioning and GNSS-RTK pesitioning. The
cycle slip detection will be applied to the mteger ambiguity
resolution to improve the fixed rate in the futwe. Morsover,
achieving 3 fixed solution for positioming autonomous
systems in the wrban canyon i stll a challenging problem to
solve, we will also explore adding more sensors to the
proposed framework to increase the fixed rate of GNSS-RTK.
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error (meters)

Evaluation of GNSS Positioning

GNSS positioning performance using the three listed methods

All data WLS EKF FGO
MEAN (m) 17.39 13.61 9.45
STD (m) 16.01 15.19 8.06
MAX (m) 94.43 88.97 31.94
Availability 100% 100% 100%
100 er‘ror
90 - —— WLS | -
—— EKF
80 —— FGO |
70 - B
60 - B
50 - g 2
‘ H —
4.67 4.(;75 4.68 65 4.69 V 4.‘7 ‘ 4.7‘05 4. 4.7‘15 4.72
time (seconds) x10*

!ﬁ * %ﬂf Interdisciplinary Division of
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WLS": weighted least square with pseudorange
EKF": Pseudorange/Doppler fusion with extended
Kalman filter

FGO": Pseudorange/Doppler fusion with factor
graph optimization

trajectory

200 . ,
—=— ground truth
—— WLS
100 EkF i
—— FGO
0F .
0
i)
© -100 - -
E
=
|5
2 -200 - .
-300 .
-400 + -
-500 -400 -300 -200 -100 0 100 200 33

casy
/" Opening Minds * Shaping the Future * il B # « B & 3



R Q THE HONG KONG

e e Engincering Q’b POLYTECHNIC UNIVERSITY
RETRRANSE v U T RE

WLS": weighted least square with

Evaluation with Huawei P40 Pro pseudorange _
Huawei P40 Pro E.KF : Pseudorange/DoppIer fusion
Phone with extended Kalman filter
All data WLS EKF FGO FGO™: Pseudorange/Doppler fusion
with factor graph optimization
MEAN (m) 31.98 19.84 12.541 trajectory
STD (m) 38.22 15.78 7.48 100l 2z N ~— ground truth]
—— WLS
MAX (m) 701.7 77.28 46.36 — EKF
-3200 - —+— FGO L
-3300 |- .
‘@ -3400 - .
o
(0]
§-3500 r .
g
< .3600 - :
-3700 |- .
-3800 - 8
-3900 L | 1 1 1 1 | 1 1 1 1 1 ]
-700 -600 -500 -400 -300 -200 -100 0 100 200 300 34

time (seconds) x10°
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Q&A

Thank you for your

attention ©
Q&A

Dr. Weisong Wen

If you have an?/ guestions or inquiries,
please feel free to contact me.

Email: welson.wen@polyu.edu.hk
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Supplementary: GNSS/INS
Integration Using Kalman Filtering
and Factor Graph Optimization




Inertial navigation system

a, , ®; are the raw accelerometer and gyroscope measurements in the body frame
a; , w; are expected measurements

) W A
2 e’ THE HONG KONG
> A ..ﬁ . : w e inoming Qr POLYTECHNIC UNIVERSITY

REIRERESS v B TR

The cap ™ denotes the noisy measurement or estimation of a certain quantity
ﬁt = d¢ + R‘t/VgW + bat + n, (l)

®; = w; + b, +n,(2)

X

n,~N(@0,02),n,~N(0,02)

37
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Error analysis of inertial navigation system

> The errors of accelerometer and gyroscope can be divided into:
deterministic error & random error.

> Deterministic errors can be calibrated in advance including bias, scale...

> Random error usually assumes that noise obeys Gaussian distribution,
including Gaussian white noise, bias random walk...

woise

Common systematic errors in IMU

Sensor scale factor ]
Output (slope of line) blas
noise
scale factor
bias .
0 Sensor




b THE HONG KONG
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Deterministic error

(sourcing imperfectness of electrical/mechanical components)

> Bilas: In theory, the output of the IMU sensor should be 0
when there is no external action. However, there is a
bias b to the international data. Influence of
accelerometer bias on orientation estimation:

1 N
_ _ 2 =
Verror = Dat, Perror = Ebat 2 )
. E
> Scale: The ratio between the actual value and the r’
sensor output value. T L | Ineut
A4

39
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DeterministiC error (sourcing imperfectness of installation)

> Nonorthogonality/Misalignment Errors: When manufacturing multi-axis
IMU sensors, due to the manufacturing process, the xyz axis may not be
vertical.

» o ¢ ‘:) ‘;! %-‘ﬁ /\“ﬂ/gf Interdisciplinary Division of Qb THE HQNG KQ'\TG

T — M Acronautical and Aviation Engincering q P(_)L_YlL"('H‘I\K’UNIVERSI—[.Y
rT b prTenasns v i N

Scale + Misalignment

Myy My,
ay myz Syy myz
Mz Mgy

Measured Acc True Acc

Y

Z axis is tilted

40
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Deterministic error calibration method—Accelerometer

> The six-sided method means that the three axes of the accelerometer
are placed horizontally up or down for a period of time, and data on the
six sides are collected to complete the calibration.

If the axes are orthogonal, it is easy to get bias and scale:

lup + ldown ];lp
Q=
l down ls a,xx ‘ ldOWb
S, = Sa,yy
Sa,zz

1 is the measured value of a certain axis of the accelerometer, g is the local gravity
acceleration

41
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Determmlstlc error callbratlon method—AcceIerometer

> When considering the inter-axis error, the relationship between the actual
acceleration and the measured value is:

Myy  Myz][Ax bax
= myz Syy  Myz||ay| + [bay
Mz Mgy Szz 1|0y b,

> When placed horlzontally and statically on 6 sides, the theoretical value of
acceleration is

g -9 0 0 0 0
d1 = 0 ,ydp = 0 ,a3=[g],a4=[—g],a5= 0 ,ydg = 0
0 0 0 0 g -9

> Corresponding measurement value matrix L
L=[l l Iz ly ls Ig]

> 12 variables can be obtained by using least squares.

42
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Deterministic error calibration method Gyroscope

> Unlike the six-sided method of accelerometer, the true value of the
gyroscope is provided by a high-precision turntable. The 6 faces in this
refer to the clockwise and counterclockwise rotation of each axis

high-precision
three-axis turntable

43

Control paned IMU data acquisition computer
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Random error — Unstableness of electrical and mechanical
component due to temperature

e~ X D L
. O ok 4 ' : R THE HONG KONG
O % g%f’; i ey i Q? POLYTECHNIC UNIVERSITY

> We can calibrate to do temperature compensation on the bias and scale estimated

by the sensor, and to obtain the values of bias and scale at different temperatures
and draw them into a curve.

> Soak method: control the temperature value of the constant temperature room,
and then read the sensor value for calibration.

The thin solid lines are the 1000 e soo0
results under separated o> %&
heating and cooling -1} _ / '
processes The thick lines are 5.0 ey A
the final curve fitted result . 3000} ey
i —
L e . S ™
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Nomenclature

> afi°c :measured 3-axis accelerations by the accelerometers at epoch ¢

> w.”":measured 3-axis rotation by the gyroscopes at epoch ¢

> Xjwey :estimated 3-axis position in body frame by INS at epoch t

> v,’j:;fg -estimated 3-axis velocity in body frame by INS at epoch t

> ‘PIbNOgi’ .estimated 3-axis orientation in body frame (Euler angles) by INS at epoch t

body
at

> Bbody

w,t

> B :estimated 3—axis biaes of accelerometers in body frame at epoch ¢

:estimated 3—axis biaes of gyroscopes in body frame at epoch ¢
> W), :estimated 3—axis random walk noise of accelerometers in body frame

> W), :estimated 3—axis random walk noise of gyroscopes in body frame

45
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 Offline
a,tqcc’ w?yro i AI_Ian i
T ng Variance kit 1
. | Analysis | ! :
Fmmmm---- ) | L o e e e e e e e ! I
' IMU ! |
: : v :
1 1 body

| Gyroscope | adc, wfyro INS | |
1 r > . . I
: : Mechanization I
+ [ Accelerometer | .
1 1 |

i 1 local local local
"""""""""" OXns,t: OVins,t ) OPINs ¢ :
|
v |

I - - -
GNSS Iensse |  Least Square XiNes Kalman Filter « ~~ " Navigation Solutions
Receiver Positioning R > xlocal ylocal yplocal
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INS Mechanization T e o e g e el

The Euler angle rates obtained by angular velocity:

) 1 sin(¢) tan(8) cos(¢) tan(6) D
: ybod . G
0| ="Yyst = |0 cos(¢) —sin(¢) |w”° = [q]
Y 0 sin(¢)sec(0) cos(¢p)sec() r
0¢ Rotate the Euler angles from Body to Local
body __ wybody .
6‘PINS,t = Wins; At = (06 o
local _ plocalyybody
o ‘PII(\)Igf% - Rboocc?ylpms,t
Update the current Euler angles
bod bod bod RiSH = R(X, )R(Y, 0)R(Z, )
‘PII\?Silzq'II\?Sgl—1+61PII\?S£} 1 0 0 cos(6) 0 sin(0)|[cos(y) —sin(yp) O
) ) , =10 cos(¢p) —sin(¢p) 0 1 0 [sin(l[)) cos(@) O
0 sin(¢p) cos(¢p) [|—sin(8) 0 cos(6) 0 0 117
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INS Mechanization

To remove the gravity from the acceleration

e anJ ﬁv & N - - - -
> = % 7~ o Q THE HONG KONG
V. B 2R . éﬁﬁ/’ff(':&'ﬁéfﬁit?i’.?d'f\"‘-?:i."n':f'srngimﬁng Q'b Igyég’%l'ti(j\l—g:l(lUI\'IVERSI'['Y
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local _ plocal  body
ajnst = Rpoaydnst — 8

To obtain the change of aircraft in terms of position, velocity and orientation

afgiciar?
local _ wylocal local — yrlocal )
6XINS,t - XINS,t - XINS,t—l - VINS,t—lAt + 2
local _ yrlocal local — ~local
6Vinst = Vinst — Vinst—1 = Qpns At
local __ local local
6‘PINS,t - ‘PINS,t — INS,t—1

48
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System States:

local local local
X, = (Xlocal ylocal yplocal )
local ,local
t » Zt )

y

local

Xlocal (xlocal
)
Vlocal

Propagation model:

Xt =FX 1+BUt

1 -« 0
F=1|: -~

0 - 1

(vx » UVt
lplocal (¢roll HpitCh’l/}yaW)

y VZ¢

1

0

Kalman Fllter—GNSS/INS(Open Loop)

0

1

THE HONG KONG

¥
Lﬁ(’rl\'m'ﬂf&md?\ ation Englacering Qi POLYTECHNIC UNIVERSITY

T b prTEnauss

[ local T
6XINS,t

local
6 INSt

local
6 INS,t |

B TR

Measurement model:

AZt=Zt_HX;
sz = O
H=]| : 0 :
0 e 0

local T

XG%SqSt

_ vylocal _ |.local

Zt_XGOI\?gS,t_ yGCI)VCSC'lSt

Zlocal

GNSS,t |
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O p e n L O O p Loosely Coupled-Estimated trajectory using KF (INS+GNSS)

INS+GNSS
GroundTruth

Loosely Coupled-Estimated trajectory using KF (INS+GNSS)
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> The estimated position, velocity, and attitude errors are fed back to
the inertial navigation processor, where they are used to correct the
Inertial navigation solution itself.

> any accelerometer and gyro errors estimated by the Kalman filter are
fed back to correct the IMU measurements, as they are input to the
Inertial navigation equations.

> Unlike the position, velocity, and attitude corrections, the
accelerometer and gyro corrections must be applied on every
iteration
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Closed Loop
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INS Mechanization

The Euler angle rates obtained by angular velocity:
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local _ plocalyybody
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Update the current Euler angles
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INS Mechanization

To remove the gravity from the acceleration
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local _ local body body
AiNst = body(aINS,t B, 1) 8

To obtain the change of aircraft in terms of position, velocity and orientation

localAtZ
body __ xylocal aINSt
0Xinst = Vinst-14t + — 5
local _ _local
OVinst = apys At
local local local
8 INS,t — lPKFt 1~ INS,t—1
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Kalman Filter——GNSS/INS (Closed Loop)

System States:
y Measurement model
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X%ocal= (xgocal,yéocal’zéocal) AZt — Zt _ HXE
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. . . Loosely Coupled-Estimated trajectory using KF (INS+GNSS)
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Linear Least
Souare

£=h"1(z) = Hz = (HTH) 'H"z

Best Linear Unbiased

_’
Estimation (BLU) Square
Robust Estimator  , _ arg min||h(x) — z||2
Residual function of estimator X
L2 L ul? u(x)
r(x) = h(x) —z 2 ;.
Cost function based on Ly lu(x)| 3
residuals G-M 1 Jlu®)]|? -
51 1 (2
ux) =Vr®TEx 21 el
Cauchy 1 5
Error function of estimator 2 In(1 -+ JuGoll®)
Hub 1 2
e(u(x)) uber > IIU(X)IIIfor IU(X)Isé
6(|u(x)|—56), otherwise

Non-Linear Least
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Statistical Methods of Estimation and Optimization

Maximum Likelihood

\ 4

Statistical | 7 Frequentist Estimation (MLE)
method
P(z|x) X =arg mayx P(le) (z|x)
States set event-centric estimation, fully based on
= {X0,X1,X2,, Xk} | data. Should be used in Big Data application.
X = [ ‘ 1 Bavesians . Maximum a Posterior
Xom y Estimation (MAP)

Measurement set s
2= (to 112020} P(x|z) = P(z|x)P(x) % = argmax P(Z|)()(X|Z)

P(z)
Z.O observer-centric estimation, required Optimization, i.e., Kalman
Zz=|" a knowledgeful observer (good prior- filter, factor graph

information) optimization, etc. m
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From MAP Estimate to Kalman Filter
Maximum a posteriori (MAP) estimate is given by orior
P(XlZ, U) = P(Xo) 1_[ P(Xklxk—1; uk—]_) B probability

Propagation
probability

y Xk Posterior
. probability
Assumption 1: ﬂ First-order Markov

Recursive filter

Zy
Propagation:P (X X1, Zg—1, W) o P(Xp X1, ) P(Xp—1Z 1)
Update:P (X |z;) « P(Xg|Xp—1,Zg—1, ug) Update: (x;, Py)
Vi = 2 — h(Ryx-1)
Assumption 2: Propagation: (X x—1, Pyjk—1) Sy = Hi Py HE + Ry,
_ ‘\L:: > Xijk—1 = FRp—1-1, W) Ky = Pyje-1Hi S,
System Modelling Pije—1 = FiPr_qk—1Fg + Qy Rijk = Rije—1 + KieJx
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& Gaussian Noise Py = (I = KiHy)Pyie—q
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