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GNSS Benefits

> GNSS provides a high long-term position accuracy with 
errors limited to a few meters (stand-alone), while user 
equipment is available for less than $100 (€80). 
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GPS Drawbacks

> One primary concern with using GPS as a stand-
alone source for navigation is signal interruption. 
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If the number of usable satellites is less 

than three, some receivers have the 

option of not producing a solution or 

extrapolating the last position and velocity 

solution forward in what is called dead-

reckoning (DR) navigation. Inertial 

navigation systems (INSs) can be used 

as a flywheel to provide navigation during 

shading outages. 



GPS Drawbacks
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If a vehicle’s path changes between updates, the 

extrapolation of the last GPS measurement 

produces an error in the estimated and true 

position. 

> The low update rate of the GPS observations in some equipment is 
also of concern in real-time applications, especially those related to 
vehicle control. 
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Framework of Sensors to Navigation
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Sensor Integration Based on 
Kalman Filter
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How the Sensor Fusion Problem Looks like…

>GPS provide the position in 𝑥, 𝑦, 𝑧

>IMU provide the linear angular 
velocity in 𝑥, 𝑦, 𝑧

>GPS Doppler provide velocity in 
𝑥, 𝑦, 𝑧

>Visual positioning provide relative 
motion ∆𝑥, ∆𝑦, ∆𝑧
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How to achieve this sensor fusion by 

combining the positioning from different 

sources?



State Estimation Methods
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Basics for Probabilistic
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𝑃 𝐱𝑘 𝐳1, … , 𝐳𝑘 =
𝑃 𝐳0, … , 𝐳𝑘 𝐱𝑘 𝑃 𝐱𝑘

𝑃 𝐳0, … , 𝐳𝑘

𝑃 B A =
𝑃(AB)

𝑃 𝑨
𝑃(AB) = 𝑃 B A 𝑃 𝑨 𝑃 B A =

𝑃 B A 𝑃 𝑨

𝑃 𝑨

Event A and B. 𝑃(A) denotes the probability that the event A happens.

Event z denotes the measurements. 𝑃(z) denotes the probability that the event A happens.

The probabilistic view of the state estimation is: given a set of

measurements (𝐳0, … , 𝐳𝑘), can we find a best state 𝐱𝑘 to

maximize the conditional probabilistic 𝑃 𝐱𝑘 𝐳1, … , 𝐳𝑘 ?



How do we describe the uncertainty with Gaussian Noise? 

> Gaussian distribution
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p(x) ~ N(, 2)

p(x) =
1

2

−

e 2

1 (x− )2

 2

1D (univariate)

2D+ (multi variate)



How to understand the 𝑃 𝐱𝑘 𝐳1, … , 𝐳𝑘
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𝜌𝑟,𝑡
𝑠 = 𝑟𝑟,𝑡

𝑠 + 𝑐 δ𝑟,𝑡 − δ𝑟,𝑡
𝑠 + 𝐼𝑟,𝑡

𝑠 + 𝑇𝑟,𝑡
𝑠 + 𝜀𝑟,𝑡

𝑠

Observation function for pseudorange (code) measurement

Pseudorange

Range 

distance 

Receiver clock 

Bias (1~2m)
Satellite clock 

bias

ionospheric delay 

Distance (1~2m)

tropospheric delay 

Distance (1~2m)

multipath effects, NLOS 

receptions, receiver noise, 

antenna phase-related noise

(0~100m)

||𝐩𝑡
𝐺,𝑠 − 𝐩𝑟,𝑡

𝐺 ||

𝜌𝑟,𝑡
𝑠

𝑧𝑟,𝑡
𝑠 𝐩𝑟,𝑡

𝐺
𝐱𝑟,𝑡
𝐺

𝑃 𝐱𝑘 𝐳1, … , 𝐳𝑘 =
𝑃 𝐳0, … , 𝐳𝑘 𝐱𝑘 𝑃 𝐱𝑘

𝑃 𝐳0, … , 𝐳𝑘

Formulate the 𝑷 𝐱𝒌 𝐳𝟏, … , 𝐳𝒌 for the 

GNSS pseudorange measurements!



Estimation Formulation
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𝐱0 𝐱1 𝐱2 𝐱𝑘−1 𝐱𝑘

𝐳1 𝐳2𝐳0 𝐳𝑘−1 𝐳𝑘

States set 

𝛘 = {𝐱𝑜, 𝐱1, 𝐱2, ⋯ , 𝐱𝑘} The maximum a posteriori (MAP) estimate is given by 

𝑃 𝛘 𝐙, 𝐔 =ෑ

𝑘

𝑃 𝐳𝑘|𝐱𝑘 𝑃 𝐱0 ෑ

𝑘

𝑃 𝐱𝑘|𝐱𝑘−1, 𝐮𝑘−1

Optimal State set 
ො𝛘 = 𝑎𝑟𝑔max

𝛘
(𝑃 𝛘 𝐙, 𝐔 )

Bayesian theory

𝐮0 𝐮1 𝐮𝑘

𝐮𝑖: IMU Measurement

𝐳𝑖: GNSS measurement



Kalman Filter

> In early 1960, American engineer R.E. Kalman discovered a 

linear minimum variance ESTIMATION method——Kalman Filter. 

Soon in space technology (such as flying Navigation system, 

missile guidance, and determination of satellite orbit and attitude) 

has been applied.

> Optimal combination of MEASUREMENT and PROPAGATION
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Rudolf Emil Kalman



http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
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http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf


Kalman Filter——Navigation application using dead 
reckoning and visual measurement to landmark
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Predicted and 

corrected position 

of the ship



Examples of Kalman Filter in Navigation
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Definitions

>𝐗, The state vector is the set of 
parameters describing a system, 
known as states, which the Kalman 
filter estimates. 

>𝐏, Associated with the state vector is 
an error covariance matrix. This 
represents the uncertainties in the 
Kalman filter’s state estimates and 
the degree of correlation between 
the errors in those estimates.
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Definitions

> 𝐅, The system model, also known as the process 
model or time-propagation model, describes how 
the Kalman filter states and error covariance 
matrix vary with time. (The system model is 
deterministic for the states as it is based on 
known properties of the system.)

> 𝐐, A state uncertainty should also be increased 
with time to account for unknown changes in the 
system that cause the state estimate to go out of 
date in the absence of new measurement 
information. This variation in the true values of 
the states is known as system noise or process 
noise.
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−
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Definitions

> 𝐙, The measurement vector is a set of 
simultaneous measurements of properties of the 
system which are functions of the state vector.

> 𝐑, Associated with the measurement vector is a 
measurement noise covariance matrix which 
describes the statistics of the noise on the 
measurements.

> H, Z=H(X)=HX, The measurement model
describes how the measurement vector varies as 
a function of the true state vector (as opposed to 
the state vector estimate) in the absence of 
measurement noise. 
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Key Equations of Kalman Filter

>𝐗𝑡
− = 𝐅𝐗𝑡−1

+

>𝐏𝑡
− = 𝐅𝐏𝑡−1

+ 𝐅T + 𝐐

>∆𝐙𝑡 = 𝐙𝑡 −𝐇𝐗𝑡
−

>𝐒𝑡 = 𝐇𝐏𝑡−1
− 𝐇T + 𝐑

>𝐊𝑡 = 𝐏𝑡−1
− 𝐇T𝐒𝑡

−

>𝐗𝑡
+ = 𝐗𝑡

− +𝐊𝑡∆𝐙𝑡

>𝐏𝑡
+ = 𝐈 − 𝐊𝑡𝐇 𝐏𝑡−1

− 20

𝐙 = 𝐇𝐗

Domain (Space) 
Transformation

State 
Propagation 

Measurement 
Update

>𝐗𝑡
− = 𝐅𝐗𝑡−1

+ + 𝐁𝐔𝑡

>𝐏𝑡
− = 𝐅𝐏𝑡−1

+ 𝐅T + 𝐐

>∆𝐙𝑡 = 𝐙𝑡 −𝐇𝐗𝑡
−

>𝐒𝑡 = 𝐇𝐏𝑡−1
− 𝐇T + 𝐑

>𝐊𝑡 = 𝐏𝑡−1
− 𝐇T𝐒𝑡

−1

>𝐗𝑡
+ = 𝐗𝑡

− +𝐊𝑡∆𝐙𝑡

>𝐏𝑡
+ = 𝐈 − 𝐊𝑡𝐇 𝐏𝑡−1

−



Measurement Innovation, ∆𝐙𝑡

>∆𝐙𝑡 = 𝐙𝑡 −𝐇𝐗𝑡
−

>Meaning: The difference between propagation and 
measurement in the domain of 𝐙 (measurement)

>∆𝐙𝑡 = 0, What does it mean?

>∆𝐙𝑡 ≠ 0, What shall we do? 
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The updated state covariance (uncertainty) 
considering (+) propagation covariance (uncertainty) 

The propagated state covariance (uncertainty) 
in the domain of Z (measurement) 
+ measurement covariance (uncertainty) R

Kalman Filter Gain, 𝐊𝑡

>𝐊𝑡 = 𝐏𝑡−1
− 𝐇T𝐒𝑡

−1

>𝐒𝑡 = 𝐇𝐏𝑡−1
− 𝐇T + 𝐑

If we forget there is no denominator in Matrix…

>𝐊𝑡 =
𝐏𝑡−1
− 𝐇T

𝐇𝐏𝑡−1
− 𝐇T+𝐑

>𝐊𝑡 =
𝐅𝐏𝑡−1

+ 𝐅T+𝐐 𝐇T

𝐇𝐏𝑡−1
− 𝐇T+𝐑
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𝐙 = 𝐇𝐗

Domain (Space) 
Transformation

The propagated state covariance 
(uncertainty) in the domain of the 
transpose of Z (measurement)

𝐙T = 𝐗T𝐇T



Kalman Filter Gain, 𝐊𝑡

>𝐊𝑡 =
𝐅𝐏𝑡−1

+ 𝐅T+𝐐 𝐇T

𝐇𝐏𝑡−1
− 𝐇T+𝐑

>𝐑 ≫ 𝐐, what does it mean?

>𝐑 ≪ 𝐐, what does it mean?

>𝐑 = 𝐐, what does it mean?
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Simplified the Models to Identity Matrix, 𝐈

>𝐗𝑡
− = 𝐗𝑡−1

+ + 𝐔𝑡

>𝐏𝑡
− = 𝐏𝑡−1

+ +𝐐

>∆𝐙𝑡 = 𝐙𝑡 − 𝐗𝑡
−

>𝐒𝑡 = 𝐏𝑡−1
− + 𝐑

>𝐊𝑡 = 𝐏𝑡−1
− 𝐒𝑡

−1

>𝐗𝑡
+ = 𝐗𝑡

− +𝐊𝑡∆𝐙𝑡

>𝐏𝑡
+ = 𝐈 − 𝐊𝑡 𝐏𝑡−1

−

𝐅 = 𝐈
𝐇 = 𝐈
𝐁 = 𝐈>𝐗𝑡

− = 𝐅𝐗𝑡−1
+ + 𝐁𝐔𝑡

>𝐏𝑡
− = 𝐅𝐏𝑡−1

+ 𝐅T + 𝐐

>∆𝐙𝑡 = 𝐙𝑡 −𝐇𝐗𝑡
−

>𝐒𝑡 = 𝐇𝐏𝑡−1
− 𝐇T + 𝐑

>𝐊𝑡 = 𝐏𝑡−1
− 𝐇T𝐒𝑡

−1

>𝐗𝑡
+ = 𝐗𝑡

− +𝐊𝑡∆𝐙𝑡

>𝐏𝑡
+ = 𝐈 − 𝐊𝑡𝐇 𝐏𝑡−1

−



How do we describe the uncertainty? 

> Gaussian distribution
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p(x) ~ N(, 2)

p(x) =
1

2

−

e 2

1 (x− )2

 2

1D (univariate)

2D+ (multi variate)



What Kalman Filter tries to achieve?
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Prediction measurement

Optimal Estimation by 

Weighted Average



Fusion of Gaussian distribution in 1D

> Distribution of two measurements

> Weighted least-square

> Finding minimum error
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If wi = 1/σi
2

After some calculation and rearrangements

Kalman Gain



Question: Why Kalman Filter is Optimal?

>What does it mean to Optimal?
• Maximum the Probability of the Estimation!

>What assumptions are made in Kalman Filter so 
that it can achieve Optimal?

A. Gaussian Random Variable (Gaussian Noise)

B. 1st Order of Markov Chain

28



Kalman filter in GNSS

>Example of the GNSS loosely-coupled 
pseudorange/Doppler integration using 
Kalman filter

>Example of the GNSS tightly-coupled 
pseudorange/Doppler integration using Kalman 
filter

29
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Statistical 

method

Frequentist

Bayesians

Maximum Likelihood 

Estimation (MLE)

Maximum a Posterior 

Estimation (MAP)

𝑃 𝐱 𝐳 =
𝑃 𝐳 𝐱 𝑃 𝐱

𝑃 𝐳

ො𝐱 = argma𝑥
𝐱∈𝐗

𝑃 𝐙 𝝌 𝐱 𝐳

ො𝐱 = argma𝑥
𝐱∈𝐗

𝑃 𝐙 𝝌 𝐳 𝐱

Statistical Methods for Estimation and Optimization

𝑃 𝐳 𝐱

Optimization, i.e., Kalman 
filter, factor graph 
optimization, etc.

event-centric estimation, fully based on 
data. Should be used in Big Data application.

observer-centric estimation, 
required a knowledgeful observer 
(good prior-information)

States set 

𝛘 = {𝐱𝑜, 𝐱1, 𝐱2, ⋯ , 𝐱𝑘}

Measurement set 

𝐙 = {𝐳𝑜, 𝐳1, 𝐳2, ⋯ , 𝐳𝑘}

𝐱 =

𝑥0
⋮
𝑥𝑚

𝐳 =

𝑧0
⋮
𝑧𝑛



Batch (including all the data in the past) optimization 
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𝐗0

𝐅

𝐙1

𝐗1
+



Batch (including all the data in the past) optimization 
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𝐗0

𝐅

𝐙1

𝐙2

𝐅

𝐗1
+

𝐗2
+



Batch (including all the data in the past) optimization 

3333

𝐗0

𝐅

𝐙1

𝐙2

𝐙3

𝐅
𝐅

𝐗1
+

𝐗2
+

𝐗3
+



Batch (including all the data in the past) optimization 
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𝐗0

𝐅

𝐙1

𝐙2

𝐙3

𝐙4

𝐅
𝐅

𝐗1
+

𝐅

𝐗2
+ 𝐗3

+

𝐗4
+



Kalman Filter Optimization 
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𝐗0

𝐅

𝐙1

𝐙2

𝐙3

𝐙4

𝐅
𝐅

𝐅

𝐗1
+

𝐏1
+

𝐗𝟐
+

𝐏2
+

𝐗𝟑
+

𝐏3
+

𝐗𝟒
+

𝐏4
+

1st order Markov Chain



Kalman Filter with 1D state——Update step
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Kalman Gain: specifies how much effect will the 

measurement have in the posterior, compared to the 

prediction prior. 

Which one do you trust more, your prior or your 
measurement ?   

𝑃 𝐳𝑘 𝐱𝑘

𝑃 𝐳𝑘 𝐱𝑘

𝑃 𝐱𝑘

𝑃 𝐱𝑘

𝑃 𝐱𝑘 𝐳𝑘



2D Example
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After Propagation

Measurement 
Update

After 
Measurement 
Update



Kalman filter in GNSS

>Example of the GNSS loosely-coupled 
pseudorange/Doppler integration using Kalman 
filter

>Example of the GNSS tightly-coupled 
pseudorange/Doppler integration using 
Kalman filter
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Evaluation of GNSS Positioning
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All data WLS EKF FGO

MEAN (m) 17.39 13.61 9.45

STD (m) 16.01 15.19 8.06

MAX (m) 94.43 88.97 31.94

Availability 100% 100% 100%

GNSS positioning performance using the three listed methods

WLS*: weighted least square with pseudorange

EKF*: Pseudorange/Doppler fusion with extended 

Kalman filter

FGO*: Pseudorange/Doppler fusion with factor 

graph optimization



Evaluation with Huawei P40 Pro
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All data WLS EKF FGO

MEAN (m) 31.98 19.84 12.541

STD (m) 38.22 15.78 7.48

MAX (m) 701.7 77.28 46.36

WLS*: weighted least square with 

pseudorange

EKF*: Pseudorange/Doppler fusion 

with extended Kalman filter

FGO*: Pseudorange/Doppler fusion 

with factor graph optimization

Huawei P40 Pro 

Phone



Q&A
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Dr. Weisong Wen

If you have any questions or inquiries, 
please feel free to contact me.

Email: welson.wen@polyu.edu.hk

Thank you for your 
attention ☺

Q&A

mailto:welson.wen@polyu.edu.hk


Supplementary: GNSS/INS 
Integration Using Kalman Filtering

42
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Inertial navigation system

ො𝐚𝑡 = 𝐚𝑡 + 𝐑𝑤
𝑡 𝐠𝑤 + 𝐛𝑎𝑡 + 𝐧𝑎 (1)

ෝ𝛚𝑡 = 𝛚𝑡 + 𝐛𝜔𝑡
+ 𝐧𝜔 (2)

ො𝐚𝑡 , ෝ𝛚𝑡 are the raw accelerometer and gyroscope measurements in the body frame 

𝐚𝑡 , 𝛚𝑡 are expected measurements

𝐧𝑎~𝒩(0, 𝜎𝑎
2), 𝐧𝜔~𝒩(0, 𝜎𝜔

2)

The cap ^ denotes the noisy measurement or estimation of a certain quantity



Error analysis of inertial navigation system

> The errors of accelerometer and gyroscope can be divided into:

deterministic error & random error.

> Deterministic errors can be calibrated in advance including bias, scale...

> Random error usually assumes that noise obeys Gaussian distribution,

including Gaussian white noise, bias random walk...

44

Common systematic errors in IMU

bias

noise

scale factor



Deterministic error 
(sourcing imperfectness of electrical/mechanical components)

> Bias: In theory, the output of the IMU sensor should be 0

when there is no external action. However, there is a

bias 𝐛 to the international data. Influence of

accelerometer bias on orientation estimation:

> Scale: The ratio between the actual value and the

sensor output value.

45

𝐕𝐞𝐫𝐫𝐨𝐫 = 𝐛𝐚𝑡, 𝐏𝐞𝐫𝐫𝐨𝐫 =
1

2
𝐛𝐚𝑡

2



Deterministic error (sourcing imperfectness of installation)

> Nonorthogonality/Misalignment Errors: When manufacturing multi-axis

IMU sensors, due to the manufacturing process, the xyz axis may not be

vertical.

46

Scale + Misalignment

𝑙𝑎𝑥
𝑙𝑎𝑦
𝑙𝑎𝑧

=

𝑠𝑥𝑥 𝑚𝑥𝑦 𝑚𝑥𝑧

𝑚𝑦𝑧 𝑠𝑦𝑦 𝑚𝑦𝑧

𝑚𝑧𝑥 𝑚𝑧𝑦 𝑠𝑧𝑧

𝑎𝑥
𝑎𝑦
𝑎𝑧

Z axis is tilted
True AccMeasured Acc



Deterministic error calibration method—Accelerometer

> The six-sided method means that the three axes of the accelerometer

are placed horizontally up or down for a period of time, and data on the

six sides are collected to complete the calibration.

If the axes are orthogonal, it is easy to get bias and scale:

47

𝐛𝐚 =
𝐥𝐟
𝐮𝐩
+ 𝐥𝐟

𝐝𝐨𝐰𝐧

2

𝐬𝐚 =
𝐥𝐟
𝐮𝐩
− 𝐥𝐟

𝐝𝐨𝐰𝐧

2 ∙ 𝐠
=

𝑠𝑎,𝑥𝑥
𝑠𝑎,𝑦𝑦
𝑠𝑎,𝑧𝑧

𝐥 is the measured value of a certain axis of the accelerometer, 𝐠 is the local gravity 
acceleration

𝐥𝐟
𝐮𝐩

𝐥𝐟
𝐝𝐨𝐰𝐛



> When considering the inter-axis error, the relationship between the actual

acceleration and the measured value is:

> When placed horizontally and statically on 6 sides, the theoretical value of

acceleration is

> Corresponding measurement value matrix 𝐋

> 12 variables can be obtained by using least squares.
48

𝑙𝑎𝑥
𝑙𝑎𝑦
𝑙𝑎𝑧

=

𝑠𝑥𝑥 𝑚𝑥𝑦 𝑚𝑥𝑧

𝑚𝑦𝑧 𝑠𝑦𝑦 𝑚𝑦𝑧

𝑚𝑧𝑥 𝑚𝑧𝑦 𝑠𝑧𝑧

𝑎𝑥
𝑎𝑦
𝑎𝑧

+

𝑏𝑎𝑥
𝑏𝑎𝑦
𝑏𝑎𝑧

𝐚𝟏 =
𝑔
0
0
, 𝐚𝟐 =

−𝑔
0
0

, 𝐚𝟑 =
0
𝑔
0
, 𝐚𝟒 =

0
−𝑔
0

, 𝐚𝟓 =
0
0
𝑔
, 𝐚𝟔 =

0
0
−𝑔

𝐋 = 𝒍𝟏 𝒍𝟐 𝒍𝟑 𝒍𝟒 𝒍𝟓 𝒍𝟔

Deterministic error calibration method—Accelerometer



Deterministic error calibration method——Gyroscope

> Unlike the six-sided method of accelerometer, the true value of the

gyroscope is provided by a high-precision turntable. The 6 faces in this

refer to the clockwise and counterclockwise rotation of each axis

49

high-precision 
three-axis turntable



Random error – Unstableness of electrical and mechanical 
component due to temperature

> We can calibrate to do temperature compensation on the bias and scale estimated

by the sensor, and to obtain the values of bias and scale at different temperatures

and draw them into a curve.

> Soak method: control the temperature value of the constant temperature room,

and then read the sensor value for calibration.

50

The thin solid lines are the 
results under separated 
heating and cooling 
processes The thick lines are 
the final curve fitted result .
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> 𝐚𝑡
𝐴𝑐𝑐 :measured 3-axis accelerations by the accelerometers at epoch t

> 𝛚𝑡
𝐺𝑦𝑟𝑜

:measured 3-axis rotation by the gyroscopes at epoch t

> 𝐗𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

:estimated 3-axis position in body frame by INS at epoch t

> 𝐕𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

:estimated 3-axis velocity in body frame by INS at epoch t

> 𝚿𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

:estimated 3-axis orientation in body frame (Euler angles) by INS at epoch t

> 𝐁𝑎,𝑡
𝑏𝑜𝑑𝑦

:estimated 3−axis biaes of accelerometers in body frame at epoch t

> 𝐁𝜔,𝑡
𝑏𝑜𝑑𝑦

:estimated 3−axis biaes of gyroscopes in body frame at epoch t

> 𝑾𝑏𝑎 :estimated 3−axis random walk noise of accelerometers in body frame

> 𝑾𝑏𝒂 :estimated 3−axis random walk noise of gyroscopes in body frame
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INS 

Mechanization

Gyroscope

Accelerometer

IMU

Allan

Variance

Analysis

Offline

Q

𝐚𝑡
𝐴𝑐𝑐 , 𝛚𝑡

𝐺𝑦𝑟𝑜

Kalman Filter  
GNSS

Receiver

Navigation Solutions  

𝐗𝑡
𝑙𝑜𝑐𝑎𝑙 , 𝐕𝑡

𝑙𝑜𝑐𝑎𝑙 , 𝚿𝑡
𝑙𝑜𝑐𝑎𝑙

Least Square

Positioning
R

𝐗𝐺𝑁𝑆𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

𝐚𝑡
𝐴𝑐𝑐 , 𝛚𝑡

𝐺𝑦𝑟𝑜

𝐫𝐺𝑁𝑆𝑆,𝑡

𝜹𝐗𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙 , 𝜹𝐕𝐼𝑁𝑆,𝑡

𝑙𝑜𝑐𝑎𝑙 , 𝜹𝚿𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

𝚿𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦
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The Euler angle rates obtained by angular velocity:

ሶ𝜙
ሶ𝜃
ሶ𝜓

= ሶ𝚿𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

=

1 𝑠𝑖𝑛 𝜙 𝑡𝑎𝑛(𝜃) 𝑐𝑜𝑠 𝜙 𝑡𝑎𝑛(𝜃)

0 𝑐𝑜𝑠 𝜙 − 𝑠𝑖𝑛 𝜙

0 𝑠𝑖𝑛 𝜙 𝑠𝑒𝑐(𝜃) 𝑐𝑜𝑠 𝜙 𝑠𝑒𝑐(𝜃)

𝛚𝑡
𝐺𝑦𝑟𝑜

=
𝑝
𝑞
𝑟

𝜹𝚿𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

= ሶ𝚿𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

∆𝑡 =
𝛿𝜙
𝛿𝜃
𝛿𝜓

𝐑𝑏𝑜𝑑𝑦
𝑙𝑜𝑐𝑎𝑙 = 𝐑 𝑋,𝜙 𝐑 𝑌, 𝜃 𝐑 𝑍,𝜓

=

1 0 0
0 𝑐𝑜𝑠(𝜙) −𝑠𝑖𝑛(𝜙)
0 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)

𝑐𝑜𝑠(𝜃) 0 𝑠𝑖𝑛(𝜃)
0 1 0

−𝑠𝑖𝑛(𝜃) 0 𝑐𝑜𝑠(𝜃)

𝑐𝑜𝑠(𝜓) −𝑠𝑖𝑛(𝜓) 0
𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜓) 0
0 0 1

𝚿𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙 = 𝐑𝑏𝑜𝑑𝑦

𝑙𝑜𝑐𝑎𝑙𝚿𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

𝚿𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

= 𝚿𝐼𝑁𝑆,𝑡−1
𝑏𝑜𝑑𝑦

+ 𝜹𝚿𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

Update the current Euler angles

Rotate the Euler angles from Body to Local 

Sola, Joan. "Quaternion kinematics for the error-state Kalman 

filter." arXiv preprint arXiv:1711.02508 (2017).
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To remove the gravity from the acceleration 

𝐚𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙 = 𝐑𝑏𝑜𝑑𝑦

𝑙𝑜𝑐𝑎𝑙𝐚𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

− 𝐠

𝜹𝚿𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙 = 𝚿𝐼𝑁𝑆,𝑡

𝑙𝑜𝑐𝑎𝑙 −𝚿𝐼𝑁𝑆,𝑡−1
𝑙𝑜𝑐𝑎𝑙

𝜹𝐗𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙 = 𝐗𝐼𝑁𝑆,𝑡

𝑙𝑜𝑐𝑎𝑙 − 𝐗𝐼𝑁𝑆,𝑡−1
𝑙𝑜𝑐𝑎𝑙 = 𝐕𝐼𝑁𝑆,𝑡−1

𝑙𝑜𝑐𝑎𝑙 𝛥𝑡 +
𝒂𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙Δ𝑡2

2

𝜹𝐕𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙 = 𝐕𝐼𝑁𝑆,𝑡

𝑙𝑜𝑐𝑎𝑙 − 𝐕𝐼𝑁𝑆,𝑡−1
𝑙𝑜𝑐𝑎𝑙 = 𝒂𝐼𝑁𝑆,𝑡

𝑙𝑜𝑐𝑎𝑙𝛥𝑡

To obtain the change of aircraft in terms of position, velocity and orientation
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System States:

Propagation model:

𝐗𝑡 = 𝐗𝑡
𝑙𝑜𝑐𝑎𝑙 , 𝐕𝑡

𝑙𝑜𝑐𝑎𝑙 , 𝚿𝑡
𝑙𝑜𝑐𝑎𝑙

𝐗𝑡
𝑙𝑜𝑐𝑎𝑙= 𝑥𝑡

𝑙𝑜𝑐𝑎𝑙 , 𝑦𝑡
𝑙𝑜𝑐𝑎𝑙 , 𝑧𝑡

𝑙𝑜𝑐𝑎𝑙

𝐕𝑡
𝑙𝑜𝑐𝑎𝑙 = 𝑣𝑥𝑡

𝑙𝑜𝑐𝑎𝑙 , 𝑣𝑦𝑡
𝑙𝑜𝑐𝑎𝑙 , 𝑣𝑧𝑡

𝑙𝑜𝑐𝑎𝑙

𝚿𝑡
𝑙𝑜𝑐𝑎𝑙= 𝜙𝑟𝑜𝑙𝑙 , 𝜃𝑝𝑖𝑡𝑐ℎ , 𝜓𝑦𝑎𝑤

𝐗𝑡
− = 𝐅𝐗𝑡−1

+ + 𝐁𝐔𝑡

𝐅 =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

𝐁 =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

𝐔𝑡 =

𝜹𝐗𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

𝜹𝐕𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

𝜹𝚿𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

Measurement model:

∆𝐙𝑡 = 𝐙𝑡 − 𝐇𝐗𝑡
−

𝐇 =
𝐈3×3 ⋯ 𝟎
⋮ 𝟎 ⋮
𝟎 ⋯ 𝟎

𝐙𝑡 = 𝐗𝐺𝑁𝑆𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙 =

𝑥𝐺𝑁𝑆𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

𝑦𝐺𝑁𝑆𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

𝑧𝐺𝑁𝑆𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙
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Closed-loop Correction 

> The estimated position, velocity, and attitude errors are fed back to 
the inertial navigation processor, where they are used to correct the 
inertial navigation solution itself. 

> any accelerometer and gyro errors estimated by the Kalman filter are 
fed back to correct the IMU measurements, as they are input to the 
inertial navigation equations. 

> Unlike the position, velocity, and attitude corrections, the 
accelerometer and gyro corrections must be applied on every 
iteration

57
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INS 

Mechanization

Gyroscope

Accelerometer

IMU

Allan

Variance

Analysis

Offline

Q

𝐚𝑡
𝐴𝑐𝑐 , 𝛚𝑡

𝐺𝑦𝑟𝑜

Kalman Filter  
GNSS

Receiver

Navigation Solutions  

𝐗𝑡
𝑙𝑜𝑐𝑎𝑙 , 𝐕𝑡

𝑙𝑜𝑐𝑎𝑙 , 𝚿𝑡
𝑙𝑜𝑐𝑎𝑙

Least Square

Positioning R

𝐗𝐺𝑁𝑆𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

𝐚𝑡
𝐴𝑐𝑐 , 𝛚𝑡

𝐺𝑦𝑟𝑜

𝐫𝐺𝑁𝑆𝑆,𝑡

𝐁𝑎,𝑡−1
𝑏𝑜𝑑𝑦

, 𝐁𝜔,𝑡−1
𝑏𝑜𝑑𝑦

,𝚿𝐾𝐹,𝑡−1
𝑏𝑜𝑑𝑦

𝜹𝐗𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙 , 𝜹𝐕𝐼𝑁𝑆,𝑡

𝑙𝑜𝑐𝑎𝑙 , 𝜹𝚿𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

𝑾𝑏𝜔

𝑾𝑏𝑎



INS Mechanization

59

The Euler angle rates obtained by angular velocity:

ሶ𝜙
ሶ𝜃
ሶ𝜓

= ሶ𝚿𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

=

1 𝑠𝑖𝑛 𝜙 𝑡𝑎𝑛(𝜃) 𝑐𝑜𝑠 𝜙 𝑡𝑎𝑛(𝜃)

0 𝑐𝑜𝑠 𝜙 − 𝑠𝑖𝑛 𝜙

0 𝑠𝑖𝑛 𝜙 𝑠𝑒𝑐(𝜃) 𝑐𝑜𝑠 𝜙 𝑠𝑒𝑐(𝜃)

𝛚𝑡
𝐺𝑦𝑟𝑜

− 𝐁𝜔,𝑡−1
𝑏𝑜𝑑𝑦

𝜹𝚿𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

= ሶ𝚿𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

∆𝑡 =
𝛿𝜙
𝛿𝜃
𝛿𝜓

𝐑𝑏𝑜𝑑𝑦
𝑙𝑜𝑐𝑎𝑙 = 𝐑 𝑋,𝜙 𝐑 𝑌, 𝜃 𝐑 𝑍,𝜓

=

1 0 0
0 𝑐𝑜𝑠(𝜙) −𝑠𝑖𝑛(𝜙)
0 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)

𝑐𝑜𝑠(𝜃) 0 𝑠𝑖𝑛(𝜃)
0 1 0

−𝑠𝑖𝑛(𝜃) 0 𝑐𝑜𝑠(𝜃)

𝑐𝑜𝑠(𝜓) −𝑠𝑖𝑛(𝜓) 0
𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜓) 0
0 0 1

𝚿𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙 = 𝐑𝑏𝑜𝑑𝑦

𝑙𝑜𝑐𝑎𝑙𝚿𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

𝚿𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

= 𝚿𝐾𝐹,𝑡−1
𝑏𝑜𝑑𝑦

+ 𝜹𝚿𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

𝚿𝐾𝐹,𝑡−1
𝑙𝑜𝑐𝑎𝑙 = 𝐑𝑏𝑜𝑑𝑦

𝑙𝑜𝑐𝑎𝑙𝚿𝐾𝐹,𝑡−1
𝑏𝑜𝑑𝑦

Update the current Euler angles

Rotate the Euler angles from Body to Local 
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𝐚𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙 = 𝐑𝑏𝑜𝑑𝑦

𝑙𝑜𝑐𝑎𝑙 𝐚𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

− 𝐁𝑎,𝑡−1
𝑏𝑜𝑑𝑦

− 𝐠

𝜹𝐗𝐼𝑁𝑆,𝑡
𝑏𝑜𝑑𝑦

= 𝐕𝐼𝑁𝑆,𝑡−1
𝑙𝑜𝑐𝑎𝑙 𝛥𝑡 +

𝒂𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙Δ𝑡2

2

𝜹𝚿𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙 = 𝚿𝐾𝐹,𝑡−1

𝑙𝑜𝑐𝑎𝑙 −𝚿𝐼𝑁𝑆,𝑡−1
𝑙𝑜𝑐𝑎𝑙

𝜹𝐕𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙 = 𝒂𝐼𝑁𝑆,𝑡

𝑙𝑜𝑐𝑎𝑙𝛥𝑡

To remove the gravity from the acceleration 

To obtain the change of aircraft in terms of position, velocity and orientation
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System States:

Propagation model:

𝐗𝑡
− = 𝐅𝐗𝑡−1

+ + 𝐁𝐔𝑡

𝐁 =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

𝐔𝑡 =

𝜹𝐗𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

𝜹𝐕𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

𝜹𝚿𝐼𝑁𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

𝑾𝑏𝜔

𝑾𝑏𝒂

Measurement model:

∆𝐙𝑡 = 𝐙𝑡 − 𝐇𝐗𝑡
−

𝐇 =
𝐈3×3 ⋯ 𝟎
⋮ 𝟎 ⋮
𝟎 ⋯ 𝟎

𝐙𝑡 = 𝐗𝐺𝑁𝑆𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙 =

𝑥𝐺𝑁𝑆𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

𝑦𝐺𝑁𝑆𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

𝑧𝐺𝑁𝑆𝑆,𝑡
𝑙𝑜𝑐𝑎𝑙

𝐗𝑡 = 𝐗𝑡
𝑙𝑜𝑐𝑎𝑙 , 𝐕𝑡

𝑙𝑜𝑐𝑎𝑙 , 𝚿𝑡
𝑙𝑜𝑐𝑎𝑙 , 𝐁𝑎,𝑡

𝑏𝑜𝑑𝑦
, 𝐁𝜔,𝑡

𝑏𝑜𝑑𝑦

𝐗𝑡
𝑙𝑜𝑐𝑎𝑙= 𝑥𝑡

𝑙𝑜𝑐𝑎𝑙 , 𝑦𝑡
𝑙𝑜𝑐𝑎𝑙 , 𝑧𝑡

𝑙𝑜𝑐𝑎𝑙

𝐕𝑡
𝑙𝑜𝑐𝑎𝑙 = 𝑣𝑥𝑡

𝑙𝑜𝑐𝑎𝑙 , 𝑣𝑦𝑡
𝑙𝑜𝑐𝑎𝑙 , 𝑣𝑧𝑡

𝑙𝑜𝑐𝑎𝑙

𝚿𝑡
𝑙𝑜𝑐𝑎𝑙= 𝜙𝑟𝑜𝑙𝑙 , 𝜃𝑝𝑖𝑡𝑐ℎ , 𝜓𝑦𝑎𝑤

𝐁𝑎,𝑡
𝑏𝑜𝑑𝑦

= 𝑏𝑎𝑥,𝑡
𝑏𝑜𝑑𝑦

, 𝑏𝑎𝑦,𝑡
𝑏𝑜𝑑𝑦

, 𝑏𝑎𝑧,𝑡
𝑏𝑜𝑑𝑦

𝐁𝜔,𝑡
𝑏𝑜𝑑𝑦

= 𝑏𝜔𝑥,𝑡
𝑏𝑜𝑑𝑦

, 𝑏𝜔𝑦,𝑡
𝑏𝑜𝑑𝑦

, 𝑏𝜔𝑧,𝑡
𝑏𝑜𝑑𝑦

𝐅 =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1
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