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GNSS Benefits

> GNSS provides a high long-term position accuracy with
errors limited to a few meters (stand-alone), while user
equipment is available for less than $100 (€80).
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GPS Drawbacks

> One primary concern with using GPS as a stand-
alone source for navigation is signal interruption.

If the number of usable satellites is less
than three, some receivers have the
option of not producing a solution or
extrapolating the last position and velocity
solution forward in what is called dead- e e e
reckoning (DR) navigation. Inertial E
navigation systems (INSs) can be used
as a flywheel to provide navigation during
shading outages.

Latitude
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GPS Drawbacks

> The low update rate of the GPS observations in some equipment is
also of concern in real-time applications, especially those related to
vehicle control.
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Vehicle path

Estimated position and
velocity between updates

GPS position/velocity

Actual position and velocity between updates

If a vehicle’s path changes between updates, the
extrapolation of the last GPS measurement

produces an error in the estimated and true 4
position.

GPS position/velocity update
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Framework of Sensors to NaV|gat|on

Sensing » Measuring » Measurement — Model » Estimate
GNSS
GNSS Signal — SIgE! D_eflned Pseudorange Leas_tngare — Point Position
Receiver Estimation
INS
Accelerometer/ Acceleration & INS

Raw measurements

(voltage, delays, etc) Gyroscope
Models
Visual Navigation
Features
Images —  Detection &

Tracking

Angular Velocity

Associated
Features

_ . — Relative Position
Mechanization

Least Square
Estimation

— Relative Position -
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Sensor Integration Based on
Kalman Filter




How the Sensor Fusion Problem Looks like...
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>GPS provide the positionin x,y, z

>|MU provide the linear angular : = —w
velocity in x, vy, z |
>GPS Doppler provide velocity in =~ | & &
=
X ) y ) Z Civit Mapey
. P . . . -
>Visual positioning provide relative
motion Ax, Ay, Az How to achieve this sensor fusion by
combining the positioning from different
sources? 7
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State Estimation Methods Eé&‘“ﬁéﬁ%’ﬁcs

. . Kalman Filtering
* First Order-Markov Assumption
« Gaussian noise assumption /L —
— Extended Kalman
F|Iter|ng_-bas§d Filtering
State Estimation
Maximum A 1 Unscented Kalman
i Filterin
FEELET () * First Order-Markov 5
Assumption TIMOTHY D.
Factor Graph BARFOOT
Optimization-based / Optimization
+ Gaussian noise State Estimation
assumption
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Basics for Probabillistic

Event A and B. P(A) denotes the probability that the event A happens.

P(B|A)P(A)
P(A)

P(B|A) = PP(A) mmmm) P(AB) = P(B|A)P(A) mmmmm) P (B|A) =

Event z denotes the measurements. P(z) denotes the probability that the event A happens.

P(ZOI reey Zlek)P(Xk)

POl o ) = = )

The probabilistic view of the state estimation is: given a set of
measurements (Zo, -, Zg), can we find a best state x;, to
maximize the conditional probabilistic P(xy|Z1, -+, Zg)? o

R A - LR AR

Opening Minds * Shaping the Future *




How do we describe the uncertainty with Gaussian Noise?
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> Gaussian distribution N (alu,0?)
p(x) ~ N(x0?) A
1D (univariate) 1(x=p)?
p(x) ==’ -
2O ;

1 —f(x—m’z'l(x—u)

(2;7:)0”2‘):‘1/2

2D+ (multi variate) p(X) =
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How to understand the P(x;|Z1, > Zk)

multipath effects, NLOS
receptions, receiver noise,
antenna phase-related noise

pﬁ,t = Trs,t + C(Sr,t — 81s~,t) + f}t + T,:q,t + Ef’t (0~100m)

Pseudorange 34 i \ \4 \

Range Receiver clock Satellite clock ionospheric delay tropospheric delay
distance  Bias (1~2m) bias Distance (1~2m)  Distance (1~2m)

Observation function for pseudorange (code) measurement

w W

otk

G,
P — Pyl

) g
/ (), 0, 200

pro m—) 77,  pf, mmmm) xC,
P(Zo, - Zi|xp)P(Xy)
P(Zo, -» Zg)

Formulate the P(Xg|Z1, -+, Zg) for the
GNSS pseudorange measurements!

{p(k]}: Pseudoranges (measurements)
{(xh), ytk), Zlk))): Satellite positions (known)

P(xlZ1, w0 Zk) =

o =+ (PP (-7 - b
k=1,2,..K

If K> 4, solve for user position (x, y, z),
and receiver clock bias b 11
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Estimation Formulation u;: IMU Measurement

z;: GNSS measurement

Uy uq Uy
XO Xl | | | | | ] k_l
Zi_q Zy

Z Zq Z,

States set
X = {X0,X1,X2,", Xk} The maximum a posteriori (MAP) estimate is given by

Optimal State set
%= arg max(PIZ V) PIZ,U) = | | P@ailxio) PGxo) | | POiliems o)
\_/ k k

Bayesian theory %
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Kalman Filter

> In early 1960, American engineer R.E. Kalman discovered a
linear minimum variance ESTIMATION method——Kalman Filter.
Soon in space technology (such as flying Navigation system,
missile guidance, and determination of satellite orbit and attitude)
has been applied.

> Optimal combination of MEASUREMENT and PROPAGATION

T
Initial_estimate
- unc

+- ertainty

/ o
o o
2 i u i
2 CHiSNE Rudolf Emil Kalman
o
o] o R © actual
) d s} e;;n;? mperature
O temperature
o using

o o Q kalman filter
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(1) The formulation and methods of salution of the problem apply withou modifi
tion to stationary and nonstationary statistics and io growing-memory and infinite-

imal estimation error.
efficients of the difference (or differential) equation of the optimal linear filter are ob-

A New Approach to Linear Filtering
and Prediction Problems'

The classical filtering and prediciion problem is re-examined using the Bode-
Shanon represeniation of random processes and the “state transition” method of

ifica-

(2) A nonlinear difference (or differential) equation is derived for the covariance

From the solution of this equation the co-

(3) The filtering problen is shown to be the dual of the noise-free regulator problem
The new method developed here is applied 1o two well-knawn problems, confirming

The discussion is largely self-coniined and proceeds from first principles; basic
concepts of ihe theory of random processes are reviewed in the Appendix.

R. E. KALMAN
Research Institute for Advanced Study.?
Baltimora, Md.
analysis of dynamic systems. New resulls are.
memory filiers.
mairtx of the
rained without further caleulations.
and exiending earlier resulls.
Introduction

AN MPORTANT class of theoretical and practical
problems in communication and control is of a statistical nature.
Such problems are: (i) Prediction of random signals; (ii) separa-
tion of random signals from random noise; (iii) detection of
signals of known form (pulses, sinusoids) in the presence of
random noise.

In his pioneering work. Wiener [1]° showed that problems (i)
and (if) lead 10 the so-called Wiener-Hopf integral equation: he
also gave a method (spectral factorization) for the solution of this
integral equation in the practically important special case of
stationary statistics and rational spectra

Many extensions and generalizations followed Wiener's basic
work. Zadeh and Ragazzini solved the finite-memory case [2]
Concurrently and independently of Bode and Shannon (3], they
also gave a simplified methad [2] of solution. Booton discussed
the nonstationary Wiener-Hopf equation [4]. These results are
now in standard texts (5-6). A somewhat different approach along
these main lines has been given recently by Darlington [7]. For
extensions to sampled signals, see, e.g., Franklin (8], Lees (9]
Another approach based on the eigenfunctions of the Wiener-
Hopf equation (which applies also to nonstationary problems
whereas the preceding methods in general don'), has been
pioneered by Davis [10] and applied by many others, eg.
Shinbrot [11]. Blum [12], Pugachev [13]. Soladovaikov [14].

In all these works, the objective is to obtain the specification of
a linear dynamic system (Wiener filter) which accomplishes the
prediction, separation, o detection of a random si

! This rescarch was s vy the U. S. Air Force Office of
Scicnie Resesrch e ontact AB 39 (o342
27212 Bellona Ave.

# Numbers in brackets designate References ot end of paper.
4 Of coursc, in general these tasks may be done betier by ponlincar
i, however, lmk or nothing is known about how o obtain
oot theoretically lly} these nonlincar iltcrs.
ibuted by g; lmm:nls al oy tors Division and

at lh: lnsmmm\ls and Regulators Conference, Mln:h 29- April 2, HS‘J
of THE AMERICAN SOCIETY 0F MECHANICAL ENGINEERS. b und

NoTE: Statcments and opinions advanced in e beundesstood
 individal cxpecasions of their authors and ot these of the Soc

Present methds for solving the Wiener problem are subject to
4 number of limitations which seriously curtail their practical
usefulness:

(1) The optimal filter is specified by its impulse response. It is
not a simple task to synthesize the filter from such data

(2) Numerical of the optimal is
often quite involved and poorly suited to machine computation.
The sitation gets rapidly worse with increasing complexity of
the problem.

(3) Important generalizations (e.g., growing-memory filters,
nnnsmmnary predmmn) require new derivations, frequently of
considera culty to the nonspecialist

(4) The malhcmams of the derivations are not transparent
and their tend 1o be

F
obscured

This paper introduces a new look at this whole assemblage of
problems, sidestepping the difficulties just mentioned. The
following are the highlights of the paper:

(5) Optimal Estimates and Orthogonal Projections. The
Wiener problem is approached from the point of view of condi-
tional distributions and expectations. In this way, basic facts of
the Wiener theory are quickly obtained; the scope of the resulis
and the fundamental assumptions appe:lr clearly. It is seen that all
statistical caleulations and results are based on first and second
order averages: no other satiical duta are nesded.  Thus
di @) is el.mmaud This method is well known in
probab . 75-78 and 148155 of Doob [15] and
pp. 455464 of Loéve [16]) but has not yet been used extensively
in engineering.

(6) Models for Random Processes. Following, in particular,
Bode and Shannon [3), arbitrary random signals are represented
(up to second order average stalistical properties) as the output of
a linear dynamic system excited by independent or uncorrelated
random signals (“white noise”). This is a standard trick in the
engineering applications of the Wiener theory [2-7). The
approach taken here differs from the conventional one only in the
way in which linear dynamic systems are described. We shall
emphasize the concepts of staie and siare transition; in other
arder

Mangecript foceived at ASME Headquantrs, February 24, 1959 Faper words, linear systems will be specified by systems of firs
: difference (or differential) equations. This point of view is
\T lions of the ASME-Journal of Basic B2 (Series D): 35-45. Copyright @ 1960 by ASME \

=@+ 1 )R- 1)+ ue) 23)

“hus @* is also the transition matrix of the linear dynamic system

¢ once a secursion elaion o the co-
ariance matrix P*(s) of the optimal crror X (7 - 1). Noting that
(1) s independent of x(1) and Fercirsof 5 (1t~ 1) we get
B 1) = ER (4 DK+ 1)
=%+ L AEX (- )X (0l — DO (¢4 1:4) + Q1)
O+ L E X (- 1) X (e — DO(e + 150+ Q)
O+ L OPHOD + 1z o)+ Q) (24)
shere Q1) = Eu(u'(n).
There remains the problem of obtaining an expl
+* (and thus also for ©%). Since,

formula for

R {1+ 12(0) =5+ - E [x(:+ 1)|Z(1)]
s orthogonal to§ (¢ ) - 1), it follows that by (19) that
0= E[x(c+ 1)~ A% § (G~ D]§ e 1)
= Ext+ 1§~ 1) - A%0E ¥ (e - DY G- 1.
Jating that B (¢ + 1]t - 1) is orthogonal to Z(1). the definition of
(i) given earlier, and (17), it follows further
1= EX(+ - D0 - 1) - AMOMEOP=EN'(r)

= E(e+ LK (- 1)+ e — 1] X (e - DM
— ASM()P (M),

lly. since U1} is independeat of X(z),
0=t + 1 OP*(OM'() — A*(IMOP*(M'(D).
Jow the matrix MP()M'(t)will be positive definite and hence
avertible whenever P*() is positive definitc, provided that none
[ the rows of M(7) are linearly dependent at any time, in other
cords, that none of the observed scalar random variables y(f) ...
W0 is a lincar combination of the others. Under these
ircumstances we get finally:
A% = @ir + 1 OPHOMOMOP (O] (25)

Since observations start at 1, X (1t,— 1) = X(t,): 1o begin the
‘erative evaluation of P*(5) by means of cquation (24), we must
bviously specify P¥(1,) = EX(1,)K(1,). Assuming this matrix is
asitive definite, equation (25) then yiclds A*(1,); equation (22)
P+ 1 ), amd i, (24) B, 1), completng the cyce
Fnow Q(1)'is positive definite, then all the P*(z) will be positive
efinite and the requircments. in deriving (25) will be satisficd at
ach step.

Now we remove the restriction that 1, = ¢ + 1. Since u(r) is
sthogonal to Y(e), we have

(4 1)) = E [0+ 1z () + ulnf V(] = @ + 1 0x*(er)
Tence if @1 + 1 1) has an inverse @(i; £+ 1) (which is always the
ase when @ is the transition matrix of a dynamic system
escribable by a differential equation) we have

X*(re) = e £+ (e + 1)
Fe, 21+ 1, we first observe hy repeated application of (16) that
e+ s) = e+ s+ Dxie+ 1)

*i SeimitAuin (521
o

ince uft + 5 1),

Lufz + 1) are all orthogonal to V(1)

X+ s = e+ Y]
= [+ s -+ 1%+ DY (@]
S tstt DXt (52 1)
If 5 < 0, the resubis arc similar, but X*( - s/f) will have (1 —
5)(n —p) co-ordinates.
The results of this section may be summarized as follows:
haorem 3 (Saltion af he Wiener Problem)
Consider Problem | The optimal estimate X*(t + 1) of Xt +
1) given y(t,), ... Y(1) is generated by the linear dvnamic system

X*(e+ 1) = @ + 1 OX*(1lr — 1)+ A*Opy(e) @

The estination error is given by
R0+ 1)) =@+ 10X (1) — 1)+ u(r) (23)
The covariance matrix of the estimation error is
cov Xt — 1)=EX (4t - DX (4t - 1) =P (26)
The expected quadratic loss is
ir-’m.fu = trace P*{1) n

The marrices A°(), 9% + 1: 1), P20 are generated by the
recursion relations

A%(0)= 1+ Lz P OM MO POM(0)] 28)
@t L) = Wt Lo - ANOMG 29
Pr(r 4 1) = @%r + L AP+ 151)

+ Qi

1z,

30y

In order 0 _carry out the iterations, one must_specify ihe
covariance P*(ig) of X(t;) and the covariance Q(t) of ufr).
Finally, for any s = 0, if @ is invertible

X+ sli) = e+ s 0 DA+ Dy
S s N L s 1)
x‘iH:— ||1-1r
+ (0 + 0+ DAY
30 that the estimate X*(t + si6) (s 2 0) is alsa given by a linear dy-
namic sysiem of the fype (21).

Remarks. () Eliminating A® and ®* from (28-30), a nenlincar
difference equation is obtained for P¥(r):

PHi+ 1) = O(IA L: ){P*(5) - P'(r)M(!)[MEtlF'(r}M‘(n] ’
PHOM()}@'(r + 121+ Q1) (32

This equation is lincar only if M() is invertible but then the

1
Q). Observe that equation (32) plays
a role in the present theory analogous to that of the Wicner-Hopf
equation in the conventional
Once P*(1) has been computed via (32) starting at = 1, the
explicit spesification of the optimal linear filler is immediately
available from formulas (29-30). OF course, the solution of
Equation (32), or of its differential-equation equivalent, is a much
simpler task than solution of the Wicncr-Hopf cquation.
(i) The results stated in Theorem 3 do not resolve completely
Problem 1. Little has been said, for instance, about the physical
significance of the assumplions necded lo ablain cquation (25),
the convergence and stability of the nonlincar differcace equa-
tion (32). the stability of the optimal filter (21). clc. This can
actually be done in a completely satisfactory way, but must be
lefi to a future paper. In this connection, the principal guide and

T ions of the ASME-Joumnal of Basic

82 (Series D): 35-45_ Copyright © 1960 by ASME

the matrices oceurring in cquation (31) and the covariance matrix
of X (1f) are found after simple calculations. We have, for all £ =
0,

| 1058}
S A =F GO
Gt CiN =101y
.u;ummr—l D+ 15 1)
1 GG G -1CH) -~ i)
se—l -Gl Gi-Con) -guCaln)

=10}

=CUHC() = C+C() + gl

and

cov X (1) = EX () X "(elr)

To gain some insight into the behavior of this system, let us
examine the limiting case ¢ — % of a large number of observa-
tions. Then C{1) obeys approximately the differcntial equation

W= G (12> 1)
from which we find

Lt~ (1= P73 + Bl - ho)F + it + B

=1 (9
Using (39), we get further,
IEEE [}
Q@@= 0 1 0| and ®'A® = |0 (t>=1)
=1 0 1

Thus as the number of obscrvations becomes large, we depend
almost exclusively on x,%(1ir) and x,%(1s) to cstimate x,*( + 1]t +
1) and x,*(¢ + 1 + 1). Current observations arc used almost
exclusively to estimate the noise

wD =R O-xM @ 1)

One would of course expect something like this sinc the prob-
lem is analogous to fitting a straight line to an increasing number
of points.

As a second check on the reasonableness of the results given,
observe that the case £ >> 1 is essentially the same as prediction
based on continuous ebscrvations. Sctting g = 0, we have

&

EF (N (155 15 6y =0)
T a3 ( és=0)

which is identical with the result obtained by Shinbrot [11].

Example 1, and Solodovnikov [14], Example 2, in their treal-

ment of the Wiener problem in the finite-length, continuous-data

case, using an approach entircly diffcrent from ours.

Conclusions

This paper formulates and solves the Wiener problem from the
“state” point of view. On the one hand, this leads to @ very gen-
eral treatment including cases which cause difficulties when at-
tacked by other methods. On the other hand, the Wicner problem
is shown to be closcly connccted with other problems in the
theory of control. Much remains to be done to exploit these
connections.
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Kalman Fllter—NaV|gat|on application using dead
reckoning and visual measurement to landmark

Predicted and
corrected position
of the ship

15
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Examples of Kalman Filter in Navigation

Unscented Kalman Filter SLAM

12
10
RMSE landmark 9
Y X i
Y: landmark 6
5 VX: )
Sensor W: fandmark 3
(v] Q) Lidar Measurement || Record Data .
(| ©) Radar Measurement Run landmark 7 landmark 5
Best: 0.39 Miles 4T .
Curr: 0.39 Miles
Timer: 0:00:38 landmark 4
51
AccT: Q misA2
AccN: 1 g2 0r
AccTotal: 1 m/s*2.
Jerk: 0 m/s”3
2 A : L )
2 0 2 4 6 8 10 12

\49.16
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North

Definitions

> X, The state vector is the set of
arameters describing a system, p
nown as states, which thé Kalman A

filter estimates. :

> P, Associated with the state vector is East
an error covariance matrix. This
represents the uncertainties in the
Kalman filter’s state estimates and
the degree of correlation between

the errors In those estimates.

17
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North

Definitions

> F, The system model, also known as the process
model or time-propagation model, describes how
the Kalman filter states and error covariance
matrix vary with time. (The system model is
deterministic for the states as it is based on
known properties of the system.)

> (, A state uncertainty should also be increased East
with time to account for unknown changes in the
system that cause the state estimate to go out of
date in the absence of new measurement
information. This variation in the true values of
the states is known as system noise or process
noise.

18
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Definitions
> 7., The measurement vector is a set of

simultaneous measurements of properties of the
system which are functions of the state vector.

, Associated with the measurement vector is a
measurement noise covariance matrix which
describes the statistics of the noise on the

measurements.
North
A

_ , The measurement model
describes how the measurement vector varies as
a function of the true state vector (as opposed to
the state vector estimate) in the absence of
measurement noise.

-~

19

" Opening Minds * Shaping the Future » B B & » & #t #



Key Equations of Kalman Filter

Xy =FXi + BU, } state paman Sosc
- _gp+ ET
>P; = FP} ,FT +Q

) L e % Vol A THE HONG KONG
V. B e - ;ﬁﬁ(/ »*‘13;;*::;;5:7;;-;,l;:;;;nnngngmg @bP(;Ly'l'g(:H;\'L(:UMVERSH'Y
F7 REIRBANES b/ 7 i B TR

= HX

Propagation

>AZ, =7, — HX;
>S, = HP,_;H" +R
>K, = P_,H'S;!

>Xt = X7 + K.AZ,
>PF = (I1-KHP_, 20
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Measurement Innovation, AZ,

>AZt — Zt — HXt_

>Meaning: The difference between propagation and
measurement in the domain of Z (measurement)

>AZ, = 0, What does it mean?
>AZ; # 0, What shall we do?

21
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Kalman Filter Gain, K;

Z = HX

— D— Tg—1 Domain (Space)
>Kt o Pt—lH St Tr(;:sig]rmg’ggi
_ T _ vTyT

>S, = HP;_,H" + R 2T = XTH

If we forget there is no denominator in Matrix...

The propagated state covariance

PE_ 1H ——
> Kt — (uncertainty) in the domain of the

\c:anspose of Z (measurement)
(FPt 1FT+Q)HT

— T The propagated state covariance (uncertainty)
/ HP,_;H"+R in the domain of Z (measurement)

The updated state covariance (uncertainty) + measurement covariance (uncertainty) R 22

considering (+) propagation covariance (uncertainty)
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Kalman Filter Gain, K;
+Q)HT
HP,_,HT+R
>R > Q, what does it mean?
>R « Q, what does it mean?
>R = Q, what does it mean?

>Kt=(

23
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b= goeTEmassn

Slmpllfled the Models to Identlty Matrix, 1 [F

>X; = FX{_, + BU,
>P; = FP} ,FT +Q

>AZ, = Z, — HX;
>S, = HP,_;H' +R
>K, = P;_,H'S;!
>X! = X7 + KAZ,
>P = (I-KH)P,_,

>X; = X', + U,
>P; =P, +Q

>AZt —_ Zt — X;

=>St :Pt_—l_l_R

>K; = PS¢}
>X{ = X7 + KAZ,
>PF = (1-—

113_1

K)P;_4
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How do we describe the uncertainty?

> Gaussian distribution

p(x) ~ N(x0°)

N(z|p,0?)

1D (univariate) 1(x=p)?
p(x)= e* of
2To
. 1 —f(x—m’z‘l(x—u)
2D+ (multi variate) p(X) = e
(Zﬂ)d/Z‘E‘

~~ Opening Minds + Shaping the Future
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What Kalman Filter tries to achieve?
Prediction measurement

Optimal Estimation by
Weighted Average

= =N

o1

005 -
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Fusion of Gaussian distribution in 1D

After some calculation and rearrangements
> Distribution of two measurements >
¢ =q,+—5——,-q,)
¢, = ¢, with variance o Kalman Gain — — " oito;

n . . 2
4, = ¢, with variance o5

> Weighted least-square

i
= z wi(g—q.)

i =1

> Finding minimum error  'fw;=1/5?

oS n .
aq an“ (f,!—f[) 221"";(’4—‘»};) =

i=1 i=1

27
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Questlon Why Kalman Filter Is Optlmal’?

>What does it mean to Optimal?
« Maximum the Probability of the Estimation!

>What assumptions are made in Kalman Filter so
that it can achieve Optimal?
A. Gaussian Random Variable (Gaussian Noise)
B. 15t Order of Markov Chain

28
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Kalman filter in GNSS

>Example of the GNSS loosely-coupled
pseudorange/Doppler integration using
Kalman filter

>Example of the GNSS tightly-coupled
pseudorange/Doppler integration using Kalman
filter

29
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Statistical Methods for Estimation and Optimization

Maximum Likelihood

\ 4

Statistical | 7 Frequentist Estimation (MLE)
method
P(z|x) X =arg mayx P(le) (z|x)
States set event-centric estimation, fully based on
= {X0,X1,X2,, Xk} | data. Should be used in Big Data application.
X = [ ‘ 1 Bavesians . Maximum a Posterior
Xom y Estimation (MAP)

Measurement set s
2= (to 112020} P(x|z) = P(z|x)P(x) % = argmax P(Z|)()(X|Z)

P(z)
Z.O observer-centric estimation, Optimization, i.e., Kalman
Z=1" required a knowledgeful observer filter, factor graph

(good prior-information) optimization, etc. W



Batch (including all the data in the pasty Optimization

v A8 e R
: W o o THE HONG KONG
V. N _ﬁ : i w Interdisciplinary Division of bP()LY'l'ECHI\'lC UNIVERSITY

Acronautical and Aviation Engincering Q sl L L
RETEEAREN v U T RE

v
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Batch (including all the data in the past) optimization

[
»

32
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Batch (including all the data in the past) optimization

v

33
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Kalman Filter Optimization
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15t order Markov Chain

v
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Kalman Filter with 1D state—— Update step

P(zilxi) = MG P(xplz)) = N5
0.4: - N(MA’JA) . = N(JU‘:»O'Q)
0.3:
P(Xk) = N(0,22) .
- N(JU’B!U}QB):
0
- P(x;) = N(51%)
= = N(ua,o%)

Kalman Gain: specifies how much effect will the
measurement have in the posterior, compared to the
prediction prior.

Which one do you trust more, your prior or your
measurement ?

_ Opening Minds * Shaping the Future * il B # « B K
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2D Example After
Measurementlll
After Propagation |

/| Measureme
|| Update
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Kalman filter in GNSS

>Example of the GNSS loosely-coupled
pseudorange/Doppler integration using Kalman
filter

>Example of the GNSS tightly-coupled
pseudorange/Doppler integration using
Kalman filter

38
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error (meters)

Evaluation of GNSS Positioning

GNSS positioning performance using the three listed methods

All data WLS EKF FGO
MEAN (m) 17.39 13.61 9.45
STD (m) 16.01 15.19 8.06
MAX (m) 94.43 88.97 31.94
Availability 100% 100% 100%
100 er‘ror
90 - —— WLS | -
—— EKF
80 —— FGO |
70 - B
60 - B
50 - g 2
‘ H —
4.67 4.(;75 4.68 65 4.69 V 4.‘7 ‘ 4.7‘05 4. 4.7‘15 4.72
time (seconds) x10*

!ﬁ * %ﬂf Interdisciplinary Division of

b THE HONG KONG
Aeronautical and Aviation Engineering ? POL_Y'J-EACHN IC UNIVERSITY
REIERGERS ik T oA

WLS": weighted least square with pseudorange
EKF": Pseudorange/Doppler fusion with extended
Kalman filter

FGO": Pseudorange/Doppler fusion with factor
graph optimization

trajectory

200 . ,
—=— ground truth
—— WLS
100 EkF i
—— FGO
0F .
0
i)
© -100 - -
E
=
|5
2 -200 - .
-300 .
-400 + -
-500 -400 -300 -200 -100 0 100 200 39
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WLS": weighted least square with

Evaluation with Huawei P40 Pro pseudorange _
Huawei P40 Pro E.KF : Pseudorange/DoppIer fusion
Phone with extended Kalman filter
All data WLS EKF FGO FGO™: Pseudorange/Doppler fusion
with factor graph optimization
MEAN (m) 31.98 19.84 12.541 trajectory
STD (m) 38.22 15.78 7.48 100l 2z N ~— ground truth]
—— WLS
MAX (m) 701.7 77.28 46.36 — EKF
-3200 - —+— FGO L
-3300 |- .
‘@ -3400 - .
o
(0]
§-3500 r .
g
< .3600 - :
-3700 |- .
-3800 - 8
-3900 L | 1 1 1 1 | 1 1 1 1 1 ]
-700 -600 -500 -400 -300 -200 -100 0 100 200 300 40

time (seconds) x10°
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Q&A

Thank you for your

attention ©
Q&A

Dr. Weisong Wen

If you have an?/ guestions or inquiries,
please feel free to contact me.

Email: welson.wen@polyu.edu.hk



mailto:welson.wen@polyu.edu.hk
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Supplementary: GNSS/INS
Integration Using Kalman Filtering




Inertial navigation system

a, , ®; are the raw accelerometer and gyroscope measurements in the body frame
a; , w; are expected measurements

) W A
2 e’ THE HONG KONG
> A ..ﬁ . : w e inoming Qr POLYTECHNIC UNIVERSITY

REIRERESS v B TR

The cap ™ denotes the noisy measurement or estimation of a certain quantity
ﬁt = d¢ + R‘t/VgW + bat + n, (l)

®; = w; + b, +n,(2)

X

n,~N(@0,02),n,~N(0,02)

43
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Error analysis of inertial navigation system

> The errors of accelerometer and gyroscope can be divided into:
deterministic error & random error.

> Deterministic errors can be calibrated in advance including bias, scale...

> Random error usually assumes that noise obeys Gaussian distribution,
including Gaussian white noise, bias random walk...

woise

Common systematic errors in IMU

Sensor scale factor ]
Output (slope of line) blas
noise
scale factor
bias »
0 Sensor




b THE HONG KONG

RORNONUNNNNNNRN L N e @I o
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Deterministic error

(sourcing imperfectness of electrical/mechanical components)

> Bilas: In theory, the output of the IMU sensor should be 0
when there is no external action. However, there is a
bias b to the international data. Influence of
accelerometer bias on orientation estimation:

1 N
_ _ 2 =
Verror = Dat, Perror = Ebat 2 )
. E
> Scale: The ratio between the actual value and the r’
sensor output value. T L | Ineut
A4

45
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DeterministiC error (sourcing imperfectness of installation)

> Nonorthogonality/Misalignment Errors: When manufacturing multi-axis
IMU sensors, due to the manufacturing process, the xyz axis may not be
vertical.

» o ¢ ‘:) ‘;! %-‘ﬁ /\“ﬂ/gf Interdisciplinary Division of Qb THE HQNG KQ'\TG

T — M Acronautical and Aviation Engincering q P(_)L_YlL"('H‘I\K’UNIVERSI—[.Y
rT b prTenasns v i N

Scale + Misalignment

Myy My,
ay myz Syy myz
Mz Mgy

Measured Acc True Acc

Y

Z axis is tilted

46
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Deterministic error calibration method—Accelerometer

> The six-sided method means that the three axes of the accelerometer
are placed horizontally up or down for a period of time, and data on the
six sides are collected to complete the calibration.

If the axes are orthogonal, it is easy to get bias and scale:

lup + ldown ];lp
Q=
l down ls a,xx ‘ ldOWb
S, = Sa,yy
Sa,zz

1 is the measured value of a certain axis of the accelerometer, g is the local gravity
acceleration

47
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Determmlstlc error callbratlon method—AcceIerometer

> When considering the inter-axis error, the relationship between the actual
acceleration and the measured value is:

Myy  Myz][Ax bax
= myz Syy  Myz||ay| + [bay
Mz Mgy Szz 1|0y b,

> When placed horlzontally and statically on 6 sides, the theoretical value of
acceleration is

g -9 0 0 0 0
d1 = 0 ,ydp = 0 ,a3=[g],a4=[—g],a5= 0 ,ydg = 0
0 0 0 0 g -9

> Corresponding measurement value matrix L
L=[l l Iz ly ls Ig]

> 12 variables can be obtained by using least squares.

48
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Deterministic error calibration method Gyroscope

> Unlike the six-sided method of accelerometer, the true value of the
gyroscope is provided by a high-precision turntable. The 6 faces in this
refer to the clockwise and counterclockwise rotation of each axis

high-precision
three-axis turntable

49

Control paned IMU data acquisition computer
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Random error — Unstableness of electrical and mechanical
component due to temperature

e~ X D L
. O ok 4 ' : R THE HONG KONG
O % g%f’; i ey i Q? POLYTECHNIC UNIVERSITY

> We can calibrate to do temperature compensation on the bias and scale estimated

by the sensor, and to obtain the values of bias and scale at different temperatures
and draw them into a curve.

> Soak method: control the temperature value of the constant temperature room,
and then read the sensor value for calibration.

. . . Gyro biases Gyro scale factor errors

The thin solid lines are the 1000 ] 00— g
results under separated o %&
. . 0 — S

heating and cooling  ~1000; _ /

. . g g 7

processes The thick lines are  * . ol _
the final curve fitted result . 3000} -~
—bgz —

40085 0 20 0 80 2 80 -1000%5 0 20 40 80 80 50
temp (°C) temp (°C)
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Nomenclature

> afi°c :measured 3-axis accelerations by the accelerometers at epoch ¢

> w.”":measured 3-axis rotation by the gyroscopes at epoch ¢

> Xjwey :estimated 3-axis position in body frame by INS at epoch t

> v,’j:;fg -estimated 3-axis velocity in body frame by INS at epoch t

> ‘PIbNOgi’ .estimated 3-axis orientation in body frame (Euler angles) by INS at epoch t

body
at

> Bbody

w,t

> B :estimated 3—axis biaes of accelerometers in body frame at epoch ¢

:estimated 3—axis biaes of gyroscopes in body frame at epoch ¢
> W), :estimated 3—axis random walk noise of accelerometers in body frame

> W), :estimated 3—axis random walk noise of gyroscopes in body frame

51
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 Offline
a,tqcc’ w?yro i AI_Ian i
T ng Variance kit 1
. | Analysis | ! :
Fmmmm---- ) | L o e e e e e e e ! I
' IMU ! |
: : v :
1 1 body

| Gyroscope | adc, wfyro INS | |
1 r > . . I
: : Mechanization I
+ [ Accelerometer | .
1 1 |

i 1 local local local
"""""""""" OXns,t: OVins,t ) OPINs ¢ :
|
v |

I - - -
GNSS Iensse |  Least Square XiNes Kalman Filter « ~~ " Navigation Solutions
Receiver Positioning R > xlocal ylocal yplocal
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INS Mechanization T e o e g e el

The Euler angle rates obtained by angular velocity:

) 1 sin(¢) tan(8) cos(¢) tan(6) D
: ybod . G
0| ="Yyst = |0 cos(¢) —sin(¢) |w”° = [q]
Y 0 sin(¢)sec(0) cos(¢p)sec() r
0¢ Rotate the Euler angles from Body to Local
body __ wybody .
6‘PINS,t = Wins; At = (06 o
local _ plocalyybody
o ‘PII(\)Igf% - Rboocc?ylpms,t
Update the current Euler angles
bod bod bod RiSH = R(X, )R(Y, 0)R(Z, )
‘PII\?Silzq'II\?Sgl—1+61PII\?S£} 1 0 0 cos(6) 0 sin(0)|[cos(y) —sin(yp) O
) ) , =10 cos(¢p) —sin(¢p) 0 1 0 [sin(l[)) cos(@) O
0 sin(¢p) cos(¢p) [|—sin(8) 0 cos(6) 0 0 113
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INS Mechanization

To remove the gravity from the acceleration

e anJ ﬁv & N - - - -
> = % 7~ o Q THE HONG KONG
V. B 2R . éﬁﬁ/’ff(':&'ﬁéfﬁit?i’.?d'f\"‘-?:i."n':f'srngimﬁng Q'b Igyég’%l'ti(j\l—g:l(lUI\'IVERSI'['Y
v Y T TR A

REIEEAEEN

local _ plocal  body
ajnst = Rpoaydnst — 8

To obtain the change of aircraft in terms of position, velocity and orientation

afgiciar?
local _ wylocal local — yrlocal )
6XINS,t - XINS,t - XINS,t—l - VINS,t—lAt + 2
local _ yrlocal local — ~local
6Vinst = Vinst — Vinst—1 = Qpns At
local __ local local
6‘PINS,t - ‘PINS,t — INS,t—1
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System States:

local local local
X, = (Xlocal ylocal yplocal )
local ,local
t » Zt )

y

local

Xlocal (xlocal
)
Vlocal

Propagation model:

Xt =FX 1+BUt

1 -« 0
F=1|: -~

0 - 1

(vx » UVt
lplocal (¢roll HpitCh’l/}yaW)

y VZ¢

1

0

Kalman Fllter—GNSS/INS(Open Loop)

0

1

THE HONG KONG

¥
Lﬁ(’rl\'m'ﬂf&md?\ ation Englacering Qi POLYTECHNIC UNIVERSITY

T b prTEnauss

[ local T
6XINS,t

local
6 INSt

local
6 INS,t |

B TR

Measurement model:

AZt=Zt_HX;
I3 - 0
H=]| : 0 :
0 e 0

local T

XG%SqSt

_ vylocal _ |.local

Zt_XGOI\?gS,t_ yGCI)VCSC'lSt

Zlocal

GNSS,t |
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O p e n L O O p Loosely Coupled-Estimated trajectory using KF (INS+GNSS)

INS+GNSS
GroundTruth

Loosely Coupled-Estimated trajectory using KF (INS+GNSS)

45t e
4
4r 3.5
351> 34
32.5 N
3F 2
— 1.5
Eosh b
1\
2F 0.5
L5k
I -
05
1 1 1 1 1 1 1
I 0 | 2 3 4 5
[m] 56

/" Opening Minds * Shaping the Future * Rl 2.4 « 5 # & %



R A = A2 % '7 Q : HONG KONG
' : . AT SRS alA |/ 7 cronmtiea and vt Engincering < E)}ﬂlf&\; ;\IEE:)I\J(NI\-’ERSI'['Y
rTE REIEBAESS v E R E TR

> The estimated position, velocity, and attitude errors are fed back to
the inertial navigation processor, where they are used to correct the
Inertial navigation solution itself.

> any accelerometer and gyro errors estimated by the Kalman filter are
fed back to correct the IMU measurements, as they are input to the
Inertial navigation equations.

> Unlike the position, velocity, and attitude corrections, the
accelerometer and gyro corrections must be applied on every
iteration
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Closed Loop
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! Analysis | ! :
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' IMU ! :
: : |
! Gyroscope ! Gyro body gbody yybody |
| Y P L afw)” . INS Bo—1 By Prri1 |
1 L > . . < |
: : Mechanization :
+ [ Accelerometer | W, '
1 1 b, 1

' i local local local a
"""""""""" OXinst OVinst, OPNst w |
b, :
v |

I - - -
GNSS Iensse |  Least Square XiNes Kalman Filter « ~~ " Navigation Solutions
Receiver Positioning R - xjocal ylocal plocal
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The Euler angle rates obtained by angular velocity:

) 1 sin(¢) tan(8) cos(¢) tan(6)
. . ybod . G bod
0| =Yvst = |0 cos(¢) —sin(¢) |(w”"° =B
P 0 sin(¢)sec(0) cos(¢p)sec()
0P Rotate the Euler angles from Body to Local
body _ wybody _
6lPINS,t — lPINS,t At = ge
local _ plocalyybody
Y Yinst = Rbody Pinst
Update the current Euler angles
bod bod bod
‘PII\(I)S,?E/ = lPKlg,tjil + 6‘PII\?S,135] Risdy = R(X, @R, OR(Z, )
1 0 0 cos(8) 0 sin(@)|[cos@) —sin(p) O
bod =10 cos(¢) —sin(¢) 0 1 0 ['(t/)) W) 0
ll'Il{ol’fc,tail - R%Oocda)l/lPKf?,tjil 0 sin(¢p) cos(¢p) [|—sin(8) 0 cos(6) Sm() coso 1
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INS Mechanization

To remove the gravity from the acceleration
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local _ local body body
AiNst = body(aINS,t B, 1) 8

To obtain the change of aircraft in terms of position, velocity and orientation

localAtZ
body __ xylocal aINSt
0Xinst = Vinst-14t + — 5
local _ _local
OVinst = apys At
local local local
8 INS,t — lPKFt 1~ INS,t—1
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Kalman Filter——GNSS/INS (Closed Loop)

System States:
y Measurement model

_ local yrlocal yylocal pbody gpbody
Xt - (Xt 'Vt Y lpt ) Ba,t ) B(u,t

0

1

0

[local ]
XGNSS,t

local
YGNSS,t

local

| ZGNSS,t |
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X%ocal= (xgocal,yéocal’zéocal) AZt — Zt _ HXE
Véocal — (vxéocal, vyéocal, vzéocal)
local _
lptoca - (d)rolliepitch' lpyaw) I
Bbody_ bbody bbody bbody 3X%X3
a,t _( ax,t 'Yay,t ' Yazt H= 0
body _ body ; body ; body
Bw,t - (wa,t ’ ba)y,t ’ ba)z,t O
: . i local
Propagation model: 6XiNst
_ sviocal _ vwlocal _
X; = FX{_; + BU, INSt Ly = XGnsst =
U, = | sylocal
1 0 1 o INS,t
F= [ | B=|: ] Wh,
0 1 0 1 | Wy, |
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. . . Loosely Coupled-Estimated trajectory using KF (INS+GNSS)
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